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We present a proof of the Cauchy-Schwarz inequality for ACL2(r) abstract vector spaces. Moreover,

our proof uses Smtlink, an ACL2 book that uses the SMT solver Z3 at the backend, and requires little

user-guidance beyond stating the basic inner-product and vector-space properties. By necessity, we

also present a formal theory of abstract vector spaces. The proof and theory are based on our previous

work on real vector spaces in ACL2(r). Abstraction is obtained via encapsulation, but reasoning about

abstract vectors involved building Smtlink support for Z3’s theory of uninterpreted functions and

sorts, which we also discuss. To our knowledge, this is the first formal proof of Cauchy-Schwarz for

abstract vector spaces in a first-order logic.

Let (V,R) be a vector space and 〈·, ·〉 : V ×V → R an inner product. For any u,v ∈ V , the Cauchy-

Schwarz inequality states

|〈u,v〉|2 ≤ 〈u,u〉 · 〈v,v〉. (Cauchy-Schwarz)

Proof. (sketch) Suppose u,v 6= 0. Let α = 〈v,v〉−1〈u,v〉 ∈ R and observe

0 ≤ ‖u−αv‖2 = 〈u,u〉−2α〈u,v〉+α
2〈v,v〉 = 〈u,u〉− (2α −α)〈u,v〉= 〈u,u〉− 〈v,v〉−1〈u,v〉2

. (1)

Rearranging produces Cauchy-Schwarz. For the full proof and statement of the theorem, see [2].

This extended abstract presents two novel contributions: (a) an ACL2(r) formalisation of abstract

vector spaces over R by way of encapsulation; and, (b) a highly-automated Smtlink-leveraged proof

of the Cauchy-Schwarz inequality (including square-rooted statements and equality conditions) for such

abstract spaces. Previously, we only proved Cauchy-Schwarz for V = Rn. Here, we encapsulate the

definitions of the basic functions (e.g. vector addition, etc.) for (Rn
,R,〈·, ·〉) thus suppressing the real

properties of Rn but exporting the inner-product space axioms. As discussed later, we require the co-

domain of inner-product to be R. The subsequent theorems (e.g. Cauchy-Schwarz, etc.) only depend on

the inner-product space axioms and do not assume that the vectors are real.

We will focus the rest of our discussion on (b), our proof using Smtlink. In [2], the ACL2(r) proof

of Cauchy-Schwarz involved “hand”-substituting α and guiding the theorem prover through each step

of the algebraic manipulation via instantiating the appropriate properties of the inner product and vector

space operations. This was onerous. The current proof offloads nearly all algebraic manipulations to the

Z3 SMT solver using the Smtlink [3, 4] package for ACL2. While ACL2 excels at induction, rewriting,

and reasoning about complex systems, the intricate algebraic manipulations involving inequalities that

consistently appear in the proof of Cauchy-Schwarz (as well as other “mathematical” theorems in, e.g.

applied analysis) are more efficiently performed by SMT solvers. By introducing user-defined structures

with finite rules or axioms and proving theorems over them, we have thematically delved into the realm

of SMT solvers wherein an extensive body of quality research has developed procedures and heuristics

for finding satisfiable outcomes given some finite number of assumptions. Thus, it is natural to exploit

SMT techniques for problems where the reasoning is largely “algebraic”.
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From a user’s point of view, the proof of Cauchy-Schwarz essentially amounts to stating the basic

properties of the inner product as hypotheses to Smtlink. Prior to the statement of the main theo-

rem, there are only three lemmas involved in algebraic manipulations! The application of inner product

space axioms to prove the desired hypotheses are automatically verified by ACL2(r) itself. The proof in

ACL2(r) follows easily and directly from a pencil-and-paper proof of Cauchy-Schwarz.

The somewhat surprising observation underlying this paper is that SMT techniques offer dramatic

benefits even when the theorems to be proven are statements over abstract domains. Z3 is a many-sorted

logic whereas ACL2 is untyped. For the proof of Cauchy-Schwarz in (Rn
,R), this is a largely benign

issue because Z3 supports reasoning over the reals. The exception is when functions act on objects

outside their intended domains. For example, many functions in ACL2(r) on Rn are fixed to return

zero on non-real inputs, but analogous functions in Z3 will return an arbitrary value of the appropriate

type. Given the correct hypotheses in the ACL2(r) theorem statement, e.g. (implies (real-vec-p x)

...), this problem is mitigated. For abstract Cauchy-Schwarz, on the other hand, we require the proof

to be type-independent, or the hypotheses to be otherwise free of assumptions on the particular domain

in which the vectors live. The challenge is that Smtlink requires type-recognisers for each free variable

in the hypothesis, discharges the trivial cases when a variable has a value of a “wrong” type, and invokes

Z3 to discharge the intended case.

Smtlink supports abstract types by using Z3 theories of uninterpreted sorts and functions. These al-

low users to define functions (and constants as nullary functions) over abstract types and, given some as-

sumptions about the model, reason about them. Instead of writing the type-recogniser (real-vec-p v),

we now may provide Smtlink with a recogniser for an abstract type (a-vec-p v) for which the defini-

tion is encapsulated (within the encapsulation, (a-vec-p v) is functionally equivalent to (real-vec-p

v)). Theorems dependent on manipulations of inequalities involving functions over abstract algebraic

structures are automatically proven with Smtlink. Here is the ACL2(r) proof of Cauchy-Schwarz above:

(local (defthm cs1-when-v-not-zero

(implies (and (a-vec-p u) (a-vec-p v) (vector-compatible u v) (not (vector-zero-p v)))

(b* ((uu (inner-prod u u)) (uv (inner-prod u v)) (vv (inner-prod v v)))

(<= (* uv uv) (* uu vv))))

:hints

(("Goal" :smtlink(:abstract (a-vec-p)

:functions((vector-add :formals ((u a-vec-p) (v a-vec-p))

:returns ((sum a-vec-p))

:level 0) ... ) ;; elided functions

:hypotheses( ... ;; elided hypotheses

((equal (inner-prod (vector-add u (scalar-vector-prod (- (aa u v)) v))

(vector-add u (scalar-vector-prod (- (aa u v)) v)))

(+ (inner-prod u u)

(* (- 2) (aa u v) (inner-prod u v))

(* (aa u v) (aa u v) (inner-prod v v)))))))))))

Another form of introducing abstraction into ACL2 is via monoids [1]. However, encapsulating the

type-recogniser for abstract vectors was more amenable to leveraging Smtlink, which greatly simplified

the proof of Cauchy-Schwarz. Regarding our choice of R as the co-domain of inner-prod: Cauchy-

Schwarz typically only deals with vector spaces over R or C, and an ordered subfield is necessary for

inequalities to be well-defined. This immediately excludes finite fields and the usual induced norm by

taking the square root of the inner product eliminates the last conventional candidate for fields, Q. In

the case of C, supporting complex numbers in Z3 would require representing constants as uninterpreted

nullary functions, which significantly increases the number of hypotheses to Smtlink. Nevertheless, we

leave the ACL2 proof of Cauchy-Schwarz for (V,C) as ongoing research.
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