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Lean
• Goals


• Extensibility, Expressivity, Scalability, Proof stability


• Functional Programming (efficiency)


• Platform for


• Developing custom automation and domain specific languages (DSLs)


• Software verification


• Formalized Mathematics


• Dependent Type Theory


• de Bruijn’s principle: small trusted kernel, external proof/type checkers 

Programming Language



Lean Timeline
• Lean 1 (2013) Leo and Soonho Kong


• Almost useless 

• Brave (crazy?) users in 2014: Jeremy Avigad, Cody Roux and Floris van Doorn 


• Lean 2 (2015) Leo and Soonho Kong

• First official release

• Emacs interface

• Floris van Doorn develops the HoTT library for Lean

• First Math library (Jeremy Avigad, Rob Lewis, and many others)


• Lean 3 (2016) Leo, Daniel Selsam, Gabriel Ebner, Jared Roesch, Sebastian Ullrich

• Lean is now a programming language (interpreter)

• Metaprogramming and White box automation

• VS Code interface


• Lean 4 (202x) Leo and Sebastian Ullrich

• Lean In Lean

• Compiler



Metaprogramming
• Extend Lean using Lean


• Proof/Program synthesis


• Access Lean internals using Lean

• Type inference

• Unifier

• Simplifier

• Decision procedures

• Type class resolution

• …



White box automation

APIs (in Lean) for accessing data-structures and procedures 
found in SMT solvers and ATPs.




Dependent Type Theory
• Before we started Lean, we have studied different theorem provers: ACL2, Agda, 

Automath, Coq, HOL, HOL Light, Isabelle, Mizar, PVS.

• Dependent Type Theory is really beautiful.

• Some advantages:

• Builtin computational interpretation.

• Same data structure for representing proofs and terms.

• Reduce code duplication: 

• Compiler for Haskell-like recursive equations, we can use it to write proofs.


• Mathematical structures (e.g., Groups and Rings) are first-class citizens.

• Some references:

• In praise of dependent types (Mike Shulman) 

• Type inference in mathematics (Jeremy Avigad)

https://golem.ph.utexas.edu/category/2010/03/in_praise_of_dependent_types.html
http://www.phil.cmu.edu/~avigad/misc/type_inference.pdf


Applications



Certigrad

Bug-free machine learning on stochastic computation graphs

Daniel Selsam (Stanford, now MSR)


Source code: https://github.com/dselsam/certigrad

ICML paper: https://arxiv.org/abs/1706.08605

Video: https://www.youtube.com/watch?v=-A1tVNTHUFw

Certigrad at Hacker news: https://news.ycombinator.com/item?id=14739491


https://github.com/dselsam/certigrad
https://arxiv.org/abs/1706.08605
https://www.youtube.com/watch?v=-A1tVNTHUFw
https://news.ycombinator.com/item?id=14739491


Protocol Verification
Joe Hendrix, Joey Dodds, Ben Sherman, Ledah Casburn, Simon Hudon

Galois Inc


“We defined a hash-chained based distributed time stamping service down to the byte-level 
message wire format, and specified the system correctness as an LTL liveness property over 
an effectively infinite number of states, and then verified the property using Lean. We used 
some custom tactics for proving the correctness of the byte-level serialization/
deserialization routines, defined an abstraction approach for reducing reasoning about the 
behavior of the overall network transition system to the behavior of individual components, 
and then verified those components primarily using existing Lean tactics.”


https://github.com/GaloisInc/lean-protocol-support


https://github.com/GaloisInc/lean-protocol-support


SQL Query Equivalence Checker

Axiomatic Foundations and Algorithms for Deciding Semantic Equivalences 
of SQL Queries


Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, Dan Suciu

University of Washington


https://arxiv.org/pdf/1802.02229.pdf

https://arxiv.org/pdf/1802.02229.pdf


Mathlib
The Lean mathematical library, mathlib, is a community-driven effort to build 
a unified library of mathematics formalized in the Lean prover.


Jeremy Avigad, Reid Barton, Mario Carneiro, …

https://leanprover-community.github.io/meet.html


Paper: https://arxiv.org/abs/1910.09336


https://leanprover-community.github.io/meet.html
https://arxiv.org/abs/1910.09336


https://leanprover-community.github.io/lean-perfectoid-spaces/ 
The Future of Mathematics?

https://leanprover-community.github.io/lean-perfectoid-spaces/
https://www.youtube.com/watch?v=Dp-mQ3HxgDE&t=3s


Tom Hales (University of Pittsburgh)


“To develop software and services for transforming mathematical results as 
they appear in journal article abstracts into formally structured data that 
machines can read, process, search, check, compute with, and learn from 
as logical statements.”


https://sloan.org/grant-detail/8439


https://hanoifabs.wordpress.com/2018/05/31/tentative-schedule/


https://github.com/formalabstracts/formalabstracts

https://sloan.org/grant-detail/8439
https://hanoifabs.wordpress.com/2018/05/31/tentative-schedule/
https://github.com/formalabstracts/formalabstracts


Usable Computer-Checked Proofs and Computations for Number Theorists.


https://lean-forward.github.io/


"The ultimate aim is to develop a proof assistant that actually helps 
mathematicians, by making them more productive and more confident in 
their results."


VU Amsterdam

https://lean-forward.github.io/


IMO Grand Challenge
The challenge: build an AI that can win a gold medal in the competition.


https://imo-grand-challenge.github.io/


Daniel Selsam (MSR)



Other applications
• IVy metatheory, Ken McMillan, MSR Redmond


• AliveInLean, Nuno Lopes, MSR Cambridge 


• Education


• Introduction to Logic (CMU)


• Type theory (CMU)


• Software verification and Logic (VU Amsterdam)


• Programming Languages (UW)


• Introduction to Proof (Imperial College)


• 6 papers at ITP 2019 



Extensibility
Lean 3 users extend Lean using Lean


Examples:

• Ring Solver

• Coinductive predicates

• Transfer tactic

• Superposition prover

• Linters

• Fourier-Motzkin & Omega

• Many more




Lean 3.x limitations
• Lean programs are compiled into byte code and then interpreted (slow).


• Lean expressions are foreign objects reflected in Lean.


• Very limited ways to extend the parser.


• Users cannot implement their own elaboration strategies.


• Trace messages are just strings.



Lean 4
• Implement Lean in Lean


• Parser, elaborator, compiler, tactics and formatter.

• Hygienic macro system.

• Structured trace messages.

• Only the runtime and basic primitives are implemented in C/C++.


• Foreign function interface.


• Runtime has support for boxed and unboxed data.


• Runtime uses reference counting for GC and performs destructive updates when RC = 1


• (Safe) support for low-level tricks such as pointer equality.


• A better value proposition: use proofs for obtaining more efficient code.



Lean 4 is being implemented in Lean



Lean 4 is being implemented in Lean



Beyond CIC

• In CIC, all functions are total, but to implement Lean in Lean, we want


• General recursion.


• Foreign functions.


• Unsafe features (e.g., pointer equality).



The unsafe keyword

• Unsafe functions may not terminate.


• Unsafe functions may use (unsafe) type casting.


• Regular (non unsafe) functions cannot call unsafe functions.


• Theorems are regular (non unsafe) functions. 



A Compromise
• Make sure we cannot prove False in Lean.


• Theorems proved in Lean 4 may still be checked by reference checkers.


• Unsafe functions are ignored by reference checkers.


• Allow developers to provide an unsafe version for any (opaque) function whose type is inhabited.


• Examples:


• Primitives implemented in C


• Sealing unsafe features




The partial keyword
• General recursion is a major convenience. 


• Some functions in our implementation may not terminate or cannot be shown to 
terminate in Lean, and we want to avoid an artificial “fuel" argument.


• In many cases, the function terminates, but we don’t want to “waste" time 
proving it.


• A partial definition is just syntax sugar for the unsafe + implementedBy idiom.


• Future work: allow users to provide termination later, and use meta programming 
to generate a safe and non-opaque version of a partial function.



Proofs for performance and profit

• A better value proposition: use proofs for obtaining more efficient code.

• Example: skip runtime array bounds checks


• Example: pointer equality 
 



Proofs for performance and profit

• Example: theorems as compiler rewriting rules.

• map f (map g xs) =  map (f . g) xs

• (h : assoc f) -> foldl f a xs = foldr f a xs     

xs = #[x1, x2, x3] 
f (f (f a x1) x2) x3 = f a (f x1 (f x2 x3))) 



The return of reference counting 
• Most compilers for functional languages (OCaml, GHC, …) use tracing GC 


• RC is simple to implement.


• Easy to support multi-threading programs.


• Destructive updates when reference count = 1. 

• It is a known optimization for big objects (e.g., arrays).


Array.set : Array a -> Index -> a -> Array a

• We demonstrate it is also relevant for small objects. 


• In languages like Coq and Lean, we do not have cycles.


• Easy to interface with C, C++ and Rust.



Resurrection hypothesis

Many objects die just before the creation of an 
object of the same kind. 

Examples:


• List.map : List a -> (a -> b) -> List b


• Compiler applies transformations to expressions.


• Proof assistant rewrites/simplifies formulas.


• Updates to functional data structures such as red black trees.


• List zipper




Reference counts
• Each heap-allocated object has a reference count.


• We can view the counter as a collection of tokens.


• The inc instruction creates a new token.


• The dec instruction consumes a token.


• When a function takes an argument as an owned reference, 
it must consume one of its tokens.


• A function may consume an owned reference by using dec, 
passing it to another function, or storing it in a newly 
allocated value.



Owned references: examples



Borrowed references
• If xs is an owned reference

• If xs is a borrowed reference



Borrowed references



Owned vs Borrowed
• Transformers and constructors own references.


• Inspectors and visitors borrow references.


• Remark: it is not safe to destructively update borrowed 
references even when RC = 1



Reusing small objects

First attempt



Reusing small objects

1 1xs …

f trim

1 “ hello ” 1 “ world”



Reusing small objects

1 2xs …

f trim

2 “ hello ” 1 “ world”

s

x



Reusing small objects

1 2xs …

f trim

1 “ hello ” 1 “ world”

s

x

y 1 “hello”



Reusing small objects

1 1xs …

f trim

1 “ hello ” 1 “ world”

s

x

y 1 “hello”

1 …

1 “world”

ys



Reusing small objects

1xs

f trim

y 1 “hello”

1 …

1 “world”

ys
r

BAD. We only reused the one memory cell. We can do better!



Reusing small objects

Second attempt



Reusing small objects

1 1xs …

f trim

1 “ hello ” 1 “ world”



Reusing small objects

1 2xs …

f trim

2 “ hello ” 1 “ world”

s

x



Reusing small objects

1 1
w

…

f trim

1 “ hello ” 1 “ world”

s

x

xs



Reusing small objects

1 1
w

…

f trim

1 “hello” 1 “ world”

s

x

xs

y



Reusing small objects

1 1
w

…

f trim

1 “hello” 1 “world”

s

x

xs

y

ys



Reusing small objects

1 1
w

…

f trim

1 “hello” 1 “world”

s

x

xs

y

ys

r

The whole list was destructively updated!



The compiler
• Lean => Lambda Pure


• Insert reset/reuse instructions


• Infer borrowed annotations


• Insert inc/dec instructions


• Additional optimizations


Paper: "Counting Immutable Beans: Reference Counting Optimized for Purely 
Functional Programming”, IFL 2019

https://arxiv.org/abs/1908.05647
https://arxiv.org/abs/1908.05647
https://arxiv.org/abs/1908.05647


Comparison with  
Linear/Uniqueness Types

• Values of types marked as linear/unique can be destructively 
updated.


• Compiler statically checks whether values are being used 
linearly or not.


• Pros: no runtime checks; compatible with tracing GCs.


• Cons: awkward to use; complicates a dependent type system 
even more.


• Big cons: all or nothing. A function f that takes non-shared 
values most of the time cannot perform destructive updates.



Persistent Arrays

…

… … ……

…a[0] a[1] a[31] … …

… … … … … … … … …

a[32] a[33] a[63]

…a[s] a[s+1] a[s+2]

root, tail, s (aka offset) 

Reusing big and small objects. 
Persistent arrays will often be shared.



New idioms
structure ParserState :=

(stxStack  : Array Syntax)

(pos          : String.Pos)

(cache      : ParserCache)

(errorMsg : Option Error)


def pushSyntax (s : ParserState) (n : Syntax) : ParserState :=

{ stxStack := s.stxStack.push n, .. s }


def mkNode (s : ParserState) (k : SyntaxNodeKind) (iniStackSz : Nat) : ParserState :=

match s with

| ⟨stack, pos, cache, err⟩ =>

   let newNode := Syntax.node k (stack.extract iniStackSz stack.size);

   let stack   := stack.shrink iniStackSz;

   let stack   := stack.push newNode;

   ⟨stack, pos, cache, err⟩




Object layout

• In Haskell and OCaml, object header is 1 word only.


• We need space for the RC, can we be as compact? YES!


• In 64-bit machine, 1 word = 8 bytes = 64 bits  

• 8 bits for tag

• 8 bits for number of fields

• 3 bits for memory kind (single-threaded, multi-threaded, 

persistent, stack, …)

• 45 bits for RC. Modern hardware can address only 248

• 8 + 8 + 3 + 45 = 64



What about cycles?
• Inductive datatypes in Lean are acyclic.


• We can implement co-inductive datatypes without creating 
cycles.


• Only unsafe code in Lean can create cycles.


• Cycles are overrated. 


• What about graphs? How do you represent them in Lean?

• Use arrays like in Rust.

• We have destructive updates in Lean.

• Persistent arrays are also quite fast.



Conclusion
• We are implementing Lean4 in Lean.


• Users will be able and customize all modules of the system.


• Sealing unsafe features. Logical consistency is preserved.


• Compiler generates C code. Allows users to mix compiled and interpreted code.


• It is feasible to implement functional languages using RC.


• We barely scratched the surface of the design space.


• Source code available online. http://github.com/leanprover/lean4

http://github.com/leanprover/lean4

