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2006: Verifying floating-point arithmetic at Intel



2019: Verifying crypto bignums at AWS



Floating-point kernels v cryptographic primitives

I They are both intended to be mathematically correct (give the
right answer or ‘within 0.52 ulps’)

I They are both intended to be fast

I Crypto bignums often need to be constant-time (to avoid
timing side-channels), and this may take precedence over
average-case speed

For this collection of reasons, we are writing and verifying code at
the machine code level.
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Moving from the richer and more sophisticated real number system
to integer arithmetic (and modular arithmetic at that).

Looks like regressive evolution!
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Mathematical contrasts

I The mathematical structure R of reals is a richer field
containing the integers Z as a subring. But in practice we are
interested in some finite subsets.

I Floating-point numbers can be considered as a subset of R
but operations have more intricate mathematical properties

I Most everyday algebraic laws like x + (y + z) = (x + y) + z fail,
though commutativity is more or less true (except for NaNs)

I Rounding is a fundamentally important operation, with some
regular properties but also many difficulties

I In cryptography, we are mainly concerned with operations on
Zn, the integers modulo n. This is at least a ring, and if n is
prime it’s a field (multiplicative inverses exist).
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Mathematical similarities

There are meaningful analogies between ‘metrical’ and ‘p-adic’
algorithms:

I Over R where things get smaller

I Over Z where things get more divisible by something

Nice table from Brent and Zimmermann “Modern Computer
Arithmetic”.
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A common tool: HOL Light

I HOL Light is a member of the HOL family of provers,
descended from Mike Gordon’s original HOL system developed
in the 80s.

I An LCF-style proof checker for classical higher-order logic
built on top of (polymorphic) simply-typed λ-calculus.

I HOL Light is designed to have a particularly simple and clean
logical foundation.

I Written in Objective CAML (OCaml), a somewhat popular
variant of the ML family of languages.
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The HOL family DAG

There are many HOL provers, of which HOL Light is just one, all
descended from Mike Gordon’s original HOL system in the late
1980s.
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Why HOL Light?

We need a general theorem proving system with:

I High standard of logical rigor and reliability

I Ability to mix interactive and automated proof

I Programmability for domain-specific proof tasks

I A substantial library of pre-proved mathematics

Needless to say ACL2 has also been used in these and similar
domains, as have Coq, HOL4, Isabelle/HOL, PVS etc.



Formalizing mathematics

For floating-point verifications the mathematics required is mostly:

I Elementary number theory and real analysis

I Floating-point numbers, results about rounding etc.

For the crypto bignums

I Additional number theory (e.g. Miller-Rabin pseudoprimes)
github.com/jrh13/hol-light/blob/master/Examples/miller_rabin.ml

I Elementary group theory, properties of elliptic curve groups
github.com/jrh13/hol-light/blob/master/Examples/nist_curves.ml

github.com/jrh13/hol-light/blob/master/Examples/miller_rabin.ml
github.com/jrh13/hol-light/blob/master/Examples/nist_curves.ml
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Custom inference rules

For floating-point verifications:

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Verifying error bounds in polynomial approximations

For crypto bignums

I Proving equational theorems in abstract groups and rings

I Reasoning about general properties of congruences



Custom inference rules

For floating-point verifications:

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Verifying error bounds in polynomial approximations

For crypto bignums

I Proving equational theorems in abstract groups and rings

I Reasoning about general properties of congruences



Automating divisibility reasoning

Linear (Presburger) arithmetic is a common workhorse in formal
verifications. For a lot of the ‘congruential’ reasoning a custom
decision procedure is a similarly useful workhorse:

d |a ∧ d |b ⇒ d |(a− b)
coprime(d , a) ∧ coprime(d , b)⇒ coprime(d , ab)
coprime(d , ab)⇒ coprime(d , a)
coprime(a, b) ∧ x ≡ y (mod a) ∧ x ≡ y (mod b)⇒ x ≡ y (mod (ab))
m|r ∧ n|r ∧ coprime(m, n)⇒ (mn)|r
coprime(xy , x2 + y2)⇔ coprime(x , y)
coprime(a, b)⇒ ∃x . x ≡ u (mod a) ∧ x ≡ v (mod b)
ax ≡ ay (mod n) ∧ coprime(a, n)⇒ x ≡ y (mod n)
gcd(a, n) | b ⇒ ∃x . ax ≡ b (mod n)

For more on how this works, see my paper Automating elementary
number-theoretic proofs using Gröbner bases (CADE 21):

https://www.cl.cam.ac.uk/~jrh13/papers/divisibility.pdf

https://www.cl.cam.ac.uk/~jrh13/papers/divisibility.pdf
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A common theme: formalized interval arithmetic

In both applications being able to do basic ‘interval arithmetic’,
proving naive or semi-naive bounds on expressions in a formal
setting, is very useful.

I On the floating-point side, many simpler arguments just rely
on relative error properties of non-denormalizing floating-point
roundings, say round(x) = x(1 + ε) where |ε| ≤ 2−53, and
one just needs to compose them conservatively

I In the crypto bignums, multiplier arrays often appear to throw
away carries from computations, and only because you know
bounds on those expressions do you know this is safe.

I Example: if you get a 2-part product 264h + l = xy of two
unsigned 64-bit words x and y , you know h can accept an
additional ‘increment’ carry-in without carrying out, because
(264 − 1)2 + 264 < 2128.
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Using Newton’s method for division and square root
On the floating-point side, we did lots of verifications of
Newton-based algorithms for division and square root. Consider
the special case of reciprocals where we want to calculate 1/a
starting with an approximation y

y =
1

a
(1 + ε)

If we then do the following computation

e = 1− a · y

we get e = 1− a · 1a (1 + ε) = 1− (1 + ε) = −ε, ignoring extra
rounding errors, so after

y ′ = y(1 + e)

we get y ′ = 1
a (1 + ε)(1− ε) = 1

a (1− ε2), the classic quadratic
convergence where we get twice as many bits of accuracy per
iteration.
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Modular inverses by Hensel lifting

Consider the following requirement for a 1-word (negated) modular
inverse

Given a 64-bit unsigned and odd integer a, find another
64-bit integer x such that ax ≡ −1 (mod 264), i.e. that
a * x == 0xFFFFFFFFFFFFFFFF using unsigned
silently-wrapping word operations like those on C’s
uint64_t.

This comes up in practice when computing constants for
Montgomery multiplication, which is widely used in cryptographic
bignums for the combination of efficiency and lack of
data-dependent control flow.
It can be solved in a directly similar way using Hensel lifting, the
p-adic analog of Newton’s method.
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Initial approximation

As with the floating-point inverse, we need an initial approximation
to start with. The following piece of magic (in C syntax, carat =
XOR)

x = (a - (a<<2))^2

just so happens to give a 5-bit negated modular inverse, i.e. a
value with ax ≡ −1 (mod 25) (assuming we start with an odd a, of
course).



Hensel lifting step

Suppose we have a k-bit approximation ax ≡ −1 (mod 2k) and we
do the same sort of Newton step with integers, except for a sign
flip because we want a negated inverse:

e = a * x + 1;

y = e * x + x;

By the initial assumption ax = 2kn − 1 for some integer n
So e = ax + 1 = 2kn and e + 1 = 2kn + 1 and
ay = ax(e + 1) = (2kn − 1)(2kn + 1) = 22kn2 − 1, i.e.
ay ≡ −1 (mod 22k).
These will in practice be done with word operations mod 264, so
actually the congruence holds mod 2min(2k,64). We can repeat,
doubling k each time till we max out at the word size.
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The Goldschmidt variant

There are elaborations of Newton’s method where we compute the
next error in parallel, which in this case happens to go from ε to
ε2, so this is an alternative to give the full functionality:

x = (a - (a<<2))^2;

e = a * x + 1;

x = e * x + x; e = e * e;

x = e * x + x; e = e * e;

x = e * x + x; e = e * e;

x = e * x + x;

Yet another variant is to compute a power series in the initial error
and use that directly to compute a more accurate answer.
In the floating-point setting these variants lose the ‘self-correcting’
property of Newton iteration and so need care in later iterations.
In the integer setting everything holds modulo the wordsize and we
don’t need to worry!
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Modeling the system, formalizing the spec

One nice thing about formalizing arithmetic (versus many other
settings) is that the spec is pretty easy to formalize, almost formal
already.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

Modeling the system is more challenging.



Machine code modeling overview
Our current crypto verifications are for x86_64 and ARM8 machine
code, using a simple relational model of the execution, e.g.

|- x86_ADD dest src s =

let x = read dest s and y = read src s in

let z = word_add x y in

(dest := (z:N word) ,,

ZF := (val z = 0) ,,

SF := (ival z < &0) ,,

PF := word_evenparity(word_zx z:byte) ,,

CF := ~(val x + val y = val z) ,,

OF := ~(ival x + ival y = ival z) ,,

AF := ~(val(word_zx x:nybble) +

val(word_zx y:nybble) =

val(word_zx z:nybble))) s

Most examples like this are deterministic, but the model has some
nondeterminism (e.g. some flags are undefined according to the
ISA).



Verification flow

Our approach is to verify pre-existing machine code, not
autogenerate ‘correct by construction’ code (but we usually write
the code ourselves).

, Independent of compiler or even macro-assembler correctness.

, Applicable to highly tuned efficient code that is hard to
generate automatically as well as compiled C code etc.

, Code is conventional human-readable and human-modifiable,
usage is independent of prover infrastructure.

/ Much more work involved writing code at this level, less
structured representation.

,// Exposure of low-level details like exact stack and PC offsets
and particular registers.
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and particular registers.



Verification results

The final verification results take the form of elaborated Hoare
triples where as well as the precondition and postcondition there is
a ‘frame condition’ asserting which parts of the state may change:

|- ODD(val a)

==> ensures arm

(\s. aligned_bytes_loaded s (word pc) word_negmodinv_mc /\

read PC s = word pc /\

read X0 s = a)

(\s’. read PC s’ = word (pc + 48) /\

(val a * val(read X0 s’) + 1 == 0) (mod (2 EXP 64)))

(MAYCHANGE [PC; X0; X1; X2])

The third field makes it reasonably straightforward to compose
results, e.g. for function calls, repeatedly inlined sections of code.



Verification results

The final verification results take the form of elaborated Hoare
triples where as well as the precondition and postcondition there is
a ‘frame condition’ asserting which parts of the state may change:

|- ODD(val a)

==> ensures arm

(\s. aligned_bytes_loaded s (word pc) word_negmodinv_mc /\

read PC s = word pc /\

read X0 s = a)

(\s’. read PC s’ = word (pc + 48) /\

(val a * val(read X0 s’) + 1 == 0) (mod (2 EXP 64)))

(MAYCHANGE [PC; X0; X1; X2])

The third field makes it reasonably straightforward to compose
results, e.g. for function calls, repeatedly inlined sections of code.



No separation logic

We don’t use any formalization of separation logic but state and
reason about overlap directly using that third field.

/ Involves writing explicit non-aliasing hypotheses on theorems
and reasoning about them

, Most reasoning is automated, keeps specifications explicit and
flexible.
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Example of explicit nonaliasing

A spec for a 6× 6→ 12 word multiplier (core without register
save/restore and return).

|- nonoverlapping (word pc,0x2e4) (z,8 * 12) /\

(y = z \/ nonoverlapping (y,8 * 6) (z,8 * 12)) /\

nonoverlapping (x,8 * 6) (z,8 * 12)

==> ensures x86

(\s. bytes_loaded s (word pc) bignum_mulx_6_12_mc /\

read RIP s = word(pc + 0x06) /\

C_ARGUMENTS [z; x; y] s /\

bignum_from_memory (x,6) s = a /\

bignum_from_memory (y,6) s = b)

(\s. read RIP s = word (pc + 0x2dd) /\

bignum_from_memory (z,12) s = a * b)

(MAYCHANGE [RIP; RAX; RBP; RBX; RCX; RDX;

R8; R9; R10; R11; R12; R13] ,,

MAYCHANGE [memory :> bytes(z,8 * 12)] ,,

MAYCHANGE SOME_FLAGS)

Note that the second input argument y can be the same as the
output buffer z.



The verification process

The approach we’ve settled on is a combination of Floyd-Hoare
rules for the top-level decomposition (loop invariants, sequential
composition) and then mainly symbolic simulation by proof below
that.

For instance the negated modular inverse proof naturally divides
into two pieces, one for the initial approximation (proved by
bit-blasting case splits) and one for the Hensel lifting (proved by
congruence reasoning), and we use this step to break the proof
into two with the intermediate spec:

ENSURES_SEQUENCE_TAC ‘pc + 12‘

‘\s. (a * val (read X1 s) + 1 == 0) (mod 16) /\

read X0 s = word a‘
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Continuous integration
To minimize the chance of a ‘gap at the bottom’ between the code
being verified and the code being run, we directly generate the
verification target from the object file, recording what is expected
as a sanity check:

let word_negmodinv_mc =

define_assert_from_elf "word_negmodinv_mc" "Arm/wordnegmodinv.o"

[ 0xd37ef401; (* arm_LSL X1 X0 (rvalue (word 2)) *)

0xcb010001; (* arm_SUB X1 X0 X1 *)

0xd27f0021; (* arm_EOR X1 X1 (rvalue (word 2)) *)

0xd2800022; (* arm_MOV X2 (rvalue (word 1)) *)

0x9b010802; (* arm_MADD X2 X0 X1 X2 *)

0x9b027c40; (* arm_MUL X0 X2 X2 *)

0x9b010441; (* arm_MADD X1 X2 X1 X1 *)

0x9b007c02; (* arm_MUL X2 X0 X0 *)

0x9b010401; (* arm_MADD X1 X0 X1 X1 *)

0x9b027c40; (* arm_MUL X0 X2 X2 *)

0x9b010441; (* arm_MADD X1 X2 X1 X1 *)

0x9b010400; (* arm_MADD X0 X0 X1 X1 *)

0xd65f03c0 (* arm_RET X30 *)

];;

The right-hand column is autogenerated and consists only of
objdump-style comments for documentation.
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In conclusion

I Theorem provers like HOL Light, ACL2 and others are indeed
general-purpose and can be applied to all levels of diverse
verification tasks

I In some ways the reals and the integers bring up very different
problems, but there are many interesting common themes and
analogies between the two worlds

I Programmability of a proof assistant is a tremendous boon
since these verification challenges often require specialized
inference rules not matching off-the-shelf solvers.
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