
What’s New in the Community Books
Since the ACL2-2018 Workshop

Cuong Chau1, Alessandro Coglio3 (presenter),
Shilpi Goel2, Eric McCarthy3, Mihir Mehta5,
Yan Peng4, David Russinoff1, Eric Smith3,

Sol Swords2, Mertcan Temel5, Stephen Westfold3

1ARM, 2Centaur, 3Kestrel Institute,
4University of British Columbia,
5University of Texas at Austin

ACL2-2020 Workshop



New Libraries

centaur/fgl: Bitblasting rewriter, successor to GL.

A rewriter that does bitblasting, rather than a bitblaster that has a
rewriter.

More extensible and customizable than GL.

Adds incremental SAT support.

Some fancy rewriter features discussed in the paper New Rewriter
Features in FGL at this workshop.

1 / 36



New Libraries

centaur/meta: New library of metareasoning utilities.

Based on clause-processors/pseudo-term-fty.lisp, treats
pseudo-term as an FTY sum type.

Unification, substitution, variable collection.

Unconditional rewriter.

Let-abstraction algorithm.

Utilities for understanding rewrite, equivalence, and congruence rules.

Term measure that decreases under beta-reduction.

Utility that uses meta-extract plus a runtime check to effectively
extend the functions understood by an evaluator.

2 / 36



New Libraries

centaur/svl: A framework to simulate and reason about Verilog modules
with design hierarchy.

Uses centaur/sv and centaur/vl books to generate simulation-ready
SVL designs. May sometimes be used in lieu of SVTV.

Selected submodules may not be flattened to retain design hierarchy.

Does not support combinational loops (e.g., latches).

3 / 36



New Libraries

kestrel/alists-light: A “minimalist” library about alists.

Covers acons, assoc-equal, strip-cars, strip-cdrs, pairlis$,
etc.

Introduces lookup-equal, etc.

“Minimalist” approach seeks to minimize include-books, especially
non-local ones. Example: “Just give me some theorems about
function X. Don’t make me include books about Y or Z. Don’t make
me include the books you used to prove the theorems about X.”

kestrel/arithmetic-light: A “minimalist” library about arithmetic.

Covers built-in arithmetic operations (+, *, floor, mod, numerator,
etc.).

Minimalist approach: One book per function. Almost zero non-local
include-books.

4 / 36



New Libraries

kestrel/axe: Kestrel’s Axe toolkit.

Holding area: Almost nothing there yet!

Will include Axe Rewriter, Axe Prover, Axe Equivalence Checker.

Will include Axe Lifters (JVM, x86).

Will include tools for input finding, answering questions about
programs.

Claim to fame: Structure-shared representation of terms as DAGs
allows rewriting over very large terms (e.g., verifying crypto
algorithms by unrolling loops).

See www.kestrel.edu/axe.

kestrel/booleans: A lightweight library about operations on booleans.

Covers bool-fix, boolif, boolor, booland, boolxor.

Functions are guaranteed to return booleans, so you can easily tell the
type. No need to examine every leaf of large nests.

5 / 36



New Libraries

kestrel/bv: Kestrel’s library about bit-vectors (BVs).

Represents bit-vectors as natural numbers.

Supports the Kestrel JVM model and Axe.

Functions are guaranteed to return bit vectors, so you can easily tell
the type. No need to examine every leaf of large nests.

Covers bvchop, slice, bvcat, bvplus, bvxor, BV rotation, etc.

Much more material to add (in development over 10 years).

kestrel/bv-lists: A library about lists of BVs (see also kestrel/bv).

Unpacking: Splitting a BV into a list of smaller BVs.

Packing: Combining a list of smaller BVs into a single BV.

Conversions between lists of bits and lists of bytes (big-endian and
little-endian).

Operations that map BV operations over lists: bvchop-list,
bvxor-list.

6 / 36



New Libraries

kestrel/crypto: Executable specifications and abstract interfaces of
cryptographic functions.

Specification of short Weierstrass elliptic curves in a prime field.
Proof of closure under the group operation. Instantiation to the
secp256k1 curve used by Bitcoin and Ethereum.
Specification of Deterministic ECDSA (Elliptic Curve Digital
Signature Algorithm) following IETF RFC 6979.
Specification of HMAC (Hashed Key Message Authentication Code)
following IETF RFC 2104. Instantiated with SHA-256 and SHA-512.
Specification of PBKDF2 (Password-Based Key Derivation Function
2) following IETF RFC 8018. Instantiated with HMAC-SHA-512.
Specification of the Keccak family of permutations, sponge functions,
and hash functions, and the FIPS 202 SHA-3 hash functions based on
Keccak.
Specifications of the SHA-2 family of hash functions (SHA-224,
SHA-256, SHA-384, SHA-512) defined in FIPS 180-4.
Specifications of some common message padding operations.

7 / 36



New Libraries

kestrel/event-macros: Utilities to develop event macros (i.e. macros at
the event level) more quickly and consistently.

Validation and elaboration of inputs of event macros.

Handling of applicability conditions (i.e. theorems that must be
proved for the event macro to apply).

Controlling of screen output of event macros.

XDOC constructors for both user and developer documentation of
event macros.

8 / 36



New Libraries

kestrel/file-io-light: A lightweight library about file I/O.

Deals with opening I/O channels, writing to files, etc.

Provides lightweight books with rules about built-in functions.

Defines some new functions (e.g., write-bytes-to-channel).

kestrel/library-wrappers: A directory of books that “wrap” other
libraries.

Each book includes some other library or book and then disables rules
that may cause problems and/or introduces improved versions.

Eventually, the wrapped libraries could be improved (and the wrapper
books eliminated).

9 / 36



New Libraries

kestrel/lists-light: A “minimalist” library about lists.

Small books about many built-in functions (cons, append, take,
union-equal, etc.).

Also defines some new functions (perm, memberp, subrange, etc.).

Uses a minimalist style, as with other “light” libraries. Also helps with
“auditing” a development (e.g., when reading all defintions in all
books included by a spec).

Perhaps list libraries are best included only locally in other
developments (like arithmetic libraries).

10 / 36



New Libraries

kestrel/prime-fields: A formalization of operations over prime fields.

Includes add, sub, neg, mul, pow, inv, and div, all modulo a supplied
prime.

pow calls existing mod-expt-fast for speed.

Provides many simplification rules (in-progress; normal forms may
change).

Includes bind-free rules for equalities: canceling common addends
and moving negated addends.

11 / 36



New Libraries

kestrel/std/basic: An extension of the Std/basic library.

Added several functions to manipulate symbols.

Added mbt$, a variant of mbt that requires non-nil instead of t.

These will be gradually moved to the std/basic directory.

kestrel/std/system: A new Std/system library with standard system
utilities that complement the built-in ones.

Several utilities have been moved here from
kestrel/utilities/system, and improved in the process.

New utilities have been added.

This is being gradually moved to the std/system directory.

12 / 36



New Libraries

kestrel/std/util: An extension of the Std/util library.

Added defarbrec, to introduce recursive functions without proving
termination right away. Compared to similar existing tools, it is
mainly aimed at use with APT.

Added deffixer, to introduce fixers and associated theorems.

Added defiso, to verify and record isomorphic mappings; described
in the paper Isomorphic Data Type Transformations at this workshop.

Added defsurj, to verify and record surjective mappings.

Added defmax-nat, to declaratively define the maximum of a
(possibly infinite) set of natural numbers.

Added defmacro+, which enhances defmacro with XDOC integration.

These will be gradually moved to the std/util directory.

13 / 36



New Libraries

kestrel/utilities/conjunctions.lisp: Utilities for manipulating
conjunctions.

kestrel/utilities/declares0.lisp: Basic utilities for manipulating
declares (more will be added).

kestrel/utilities/def-constant-opener.lisp: A utility that
generates an opener theorem for a function when all arguments are
constant (used by Axe).

kestrel/utilities/defopeners.lisp: A utility for making opener rules
for recursive functions.

kestrel/utilities/deftest.lisp: A utility for isolating tests and
running them with extensive guard checking.

kestrel/utilities/defthm-events.lisp: Utilities for processing defthm
forms.

14 / 36



New Libraries

kestrel/utilities/defun-events.lisp: Utilities for processing defun
forms.

kestrel/utilities/disables.lisp: A book that disables some built-in
functions that may be convenient to have disabled from the start.

kestrel/utilities/doublets2.lisp: Utilities that deal with doublets
(true lists of length 2).

kestrel/utilities/equal-of-booleans.lisp: Rules to break an
equality of two booleans into the equivalent conjunction of two
implications.

kestrel/utilities/erp.lisp: Utilities for returning errors (which are
often assigned to a variable called erp).

kestrel/utilities/forms.lisp: Basic utilities about forms that look
like function calls.

15 / 36



New Libraries

kestrel/utilities/keyword-value-lists2.lisp: Utilities about
keyword-value-lists.

kestrel/utilities/make-and.lisp: A utility to make an untranslated
conjunction.

kestrel/utilities/make-and-nice.lisp: A utility to make a, possibly
simplified, untranslated conjunction.

kestrel/utilities/make-or.lisp: A utility to make an untranslated
disjunction.

kestrel/utilities/make-or-nice.lisp: A utility to make a, possibly
simplified, untranslated disjunction.

kestrel/utilities/my-get-event.lisp: A utility to get the
(untranslated) event that introduced a function.

16 / 36



New Libraries

kestrel/utilities/obags: Ordered bags, i.e. finite bags represented as
non-strictly ordered lists. Cf. omaps (below) and osets (in Std/osets).

kestrel/utilities/omaps: Ordered maps, i.e. finite maps represented as
strictly ordered alists. Cf. obags (above) and osets (in Std/osets).

kestrel/utilities/pack.lisp: Utilities for making symbols from
strings, natural numbers, characters, and other symbols.

kestrel/utilities/remove-duplicates-equal-dollar.lisp: A utility
to remove duplicates, keeping the first of each set.

17 / 36



New Libraries

kestrel/utilities/smaller-termp.lisp: A utility to compare the sizes
of terms.

kestrel/utilities/sublis-expr-plus.lisp: Added sublis-expr+,
which replaces terms by variables also inside lambda expressions.

kestrel/utilities/substitution.lisp: Utilities that perform
substitution.

kestrel/utilities/terms.lisp: Various utilities for manipulating terms.

kestrel/utilities/world.lisp: Utilities for querying the ACL2 logical
world.

18 / 36



New Libraries

projects/rp-rewriter: A customized rewriter and a verified clause
processor. Implemented for multiplier verification but it is a generic
rewriter. Details are discussed in the paper RP-Rewriter: An Optimized
Rewriter for Large Terms in ACL2 at this workshop.

projects/rp-rewriter/lib/{mult,mult2}: An automated and efficient
tool to verify integer multipliers.

Supports Booth Encoding, simple partial products, and Wallace-tree
like multipliers.

Uses SVL and RP-Rewriter.

Two libraries, same functionality.

mult: more user-friendly debugging.
mult2: 30% faster.

Very efficient: 64x64 multipliers in less than 2 seconds, some
1024x1024 multipliers in less than 10 minutes.

19 / 36



New Libraries

std/testing: A new Std/testing library, with standard utilities for
building tests.

misc/assert.lisp and misc/eval.lisp have been moved here and
refactored into smaller files.

This library contains utilities to build tests, not actual tests (aside
from perhaps some to test the testing utilities).

std/typed-alists: A new Std/typed-alists library, with alists of various
types.

Analogous to Std/typed-lists.

Add more typed alists, as needed.

20 / 36



Improved Libraries

build: Books build system.

build/*.certdep: Track dependencies of books on certain ACL2
system features—see XDOC topic
acl2-system-feature-dependencies.

Add ifdef-(un)define(!) for setting/unsetting environment
variables (non-)locally, with effects on if(n)def forms understood by
the build system.

build/cert.pl supporting libraries refactored into proper (?) Perl
modules.

21 / 36



Improved Libraries

kestrel/apt: APT (Automated Program Transformations), a toolkit to
transform programs and program specifications with automated support.

Added isodata and propagate-iso, the isomorphic data type
transformations described in the paper Isomorphic Data Type
Transformations at this workshop.

Added parteval, a partial evaluation transformation.

Added casesplit, a case splitting transformation.

Extended tailrec, the tail recursion transformation.

Extended restrict, the domain restriction transformation.

Added an APT defaults table to customize certain behaviors of the
APT transformations.

Added some APT-specific XDOC constructors for both user and
developer documentation.

22 / 36



Improved Libraries

kestrel/bitcoin: A library for the Bitcoin cryptocurrency and platform.

Formalized BIP (Bitcoin Improvement Proposal) 32, 39, 43, and 44.
(These are for cryptocurrency wallets.)

Added verified executable attachments for some declaratively
specified functions.

kestrel/ethereum: A library for the Ethereum cryptocurrency and
platform.

Completed the RLP development, which started before ACL2-2018.
This development is described in the paper Ethereum’s Recursive
Length Prefix in ACL2 at this workshop.

Formalized Modified Merkle Patricia tree and the Ethereum database.

Formalized the construction of signed transactions.

Formalized the calculation of an account address from a public key.

23 / 36



Improved Libraries

kestrel/fty: Extensions of the FTY library.

Added deflist-of-len, for lists of specified size.

Added defset, for osets of specified types.

Added defomap, for omaps of specified types.

Improved defbyte and defbytelist to generate more theorems.

Added defbyte-ihs-theorems, to generate theorems about defbyte
fixtypes and functions in the IHS library.

Added deffixequiv-sk, to automate the proofs of deffixequiv for
defun-sk functions.

Added defflatsum, for flat (i.e. not tagged) sums of disjoint types.

24 / 36



Improved Libraries

kestrel/hdwallet: A proof-of-concept hierarchical deterministic wallet
for cryptocurrencies.

Uses components from the cryptographic, Bitcoin, and Ethereum
libraries.

Holds ether, but can be extended to other currencies.

Packaged into a Docker image available on the Docker Hub. Docker
build information is included.

See the file kestrel/hdwallet/README.md for build and usage
instructions.

25 / 36



Improved Libraries

kestrel/java: A library for Java.

Significantly extended ATJ, the Java code generator for ACL2. In
particular, a shallow embedding approach is now supported.
Described in a rump talk at this workshop.

Extended the Java language formalization with models of various
aspects of the language’s syntax and semantics.

Added a grammar of Java written in ABNF (Augmented Backus-Naur
Form), and processed it with the verified ABNF grammar parser in
kestrel/abnf. (This parses the ABNF grammar of Java, not Java.)

kestrel/soft: Macros to mimic second-order functions and theorems.

Simplified macros to no longer require explicit function parameters.

26 / 36



Improved Libraries

kestrel/utilities/digits-any-base: Conversions between natural
numbers and their representations in arbitrary bases.

Added functions to group and ungroup digits between larger and
smaller bases.

Added macros to generate specialized, more concise functions for
specified bases.

kestrel/utilities/strings: String utilities (to be eventually integrated
with Std/strings).

Added functions to convert between strings or character lists and
even-length lists of hexadecimal digits.

kestrel/utilities/typed-lists: Typed list utilities (to be eventually
integrated with Std/typed-lists).

Added bit-listp, with associated theorems.

27 / 36



Improved Libraries

projects/filesystems: The filesystem books now cover many more
system calls, include many more cosimulation tests, and have verification
of the transformations between HiFAT, an abstract model of FAT32 with
directory trees, and LoFAT, the concrete model of FAT32 which replicates
the on-disk FAT32 format. These verified transformations support
refinement proofs between LoFAT syscalls and their HiFAT equivalents,
and these in turn support proofs (of which examples can be seen in the
directory) to be carried out for real executable programs which use file
operations. Work is ongoing to make code proofs simpler and more
automatable with the use of separation logic. An earlier stage of this work
was covered in an ITP 2019 paper (Mehta, Cook.)
As by-products of this work, various improvements have been contributed
to the standard libraries, the Kestrel books and the ACL2 sources.

28 / 36



Improved Libraries

projects/rac: Restricted Algorithmic C.

A new book, books/projects/rac/lisp/internal-fns-gen.lisp,
which implements two tools that generate functions that compute
values of local (bound) variables of an input function (to be used as
described in Russinoff’s workshop paper):

CONST-FNS-GEN is applicable to functions with non-recursive definitions.
LOOP-FNS-GEN can be applied to certain functions with restricted
recursive definitions.

Modifications of books/projects/rac/src: The RAC parser has
been updated to check the placement restrictions on return
statements in RAC programs.

29 / 36



Improved Libraries

projects/smtlink: Smtlink, a framework for integrating external SMT
solvers into ACL2.

Allow Smtlink to handle functions using cw.

Made it possible to use :smtlink hint inside an Smtlink proof.

Added abstract type support for Smtlink.

Fixed the problem of rewrite-loops by changing computed-hints
structure in Smtlink.

Fixed the soundness bug that unary-/ can be interpreted as integer
division in Smtlink.

Added a link to an example using Smtlink for verifying an ASP*
Pipeline. (This example will be moved to the ACL2 repository once
we have the next stable version of Smtlink.)

Made improvements to the documentation.

30 / 36



Improved Libraries

projects/x86isa: X86ISA, the formal model of the x86 ISA.

Improved some aspects of the model of segmented memory.

Added support for additional forms of the MOV, SHLD, and SHRD
instructions.

Improved the definst macro to generate more boilerplate code.

Updates to program instrumentation utilities to allow logging (parts
of) the x86 state to a specified file in both CCL and SBCL.

31 / 36



Improved Libraries

rtl: Register transfer logic library.

The book books/rtl/rel11/lib/srt.lisp now includes a
formalization of a radix-8 SRT square root algorithm.

The book books/rtl/rel11/lib/add.lisp now includes a
correctness theorem for a generalized leading zero anticipator that
does not assume an ordering of its operands.

32 / 36



Improved Libraries

std/alists: Standard association list library.

Added a function remove-assocs, which generalizes remove-assoc
from single to multiple keys.

Added functions alist-map-keys and alist-map-vals, which ignore
shadowed pairs.

Added some theorems.

std/basic: Standard basic library.

Added recognizers bytep and nibblep for “standard” bytes and
nibbles.

Added pos-fix, a fixer for posp.

33 / 36



Improved Libraries

std/lists: Standard list library.

The function list-fix has been made built-in, with the name
true-list-fix.

The take-redefinition theorem has been removed, because the
built-in definition of take has been changed to be like that
redefinition.

Added a file with theorems about union-equal.

std/strings: Standard string library.

Added a variant strtok! of strtok. It does not treat multiple
contiguous delimiters like one.

Added printtree library for efficiently composing large strings from
pieces.

34 / 36



Improved Libraries

std/typed-lists: Standard typed lists library.

Added lists of strings and symbols. (Originally in
system/pseudo-good-worldp.lisp.)

std/util: Standard utility library.

The defthm-natp, defthm-unsigned-byte-p, and
defthm-signed-byte-p utilities have been moved here from the
X86ISA model.

The use-termhint utility has been moved here from
clause-processors/use-hint.lisp.

Added defret-mutual-generate, discussed in the paper Generating
Mutually Inductive Theorems from Concise Descriptions at this
workshop.

Like defun-nx, define macro also disables the
executable-counterpart of a non-executable function now.

35 / 36



Improved Libraries

system/pseudo-good-worldp.lisp: Factored out some reusable
functions.

Predicates for event forms, command forms, event landmarks,
command landmarks, and tests-and-calls structures are now in
separate files.

More could be factored out.

These could be perhaps integrated with Std/system.

xdoc/constructors.lisp: Made some improvements and additions.

xdoc/defxdoc-plus.lisp: Added defxdoc+, an enhancement of defxdoc
that supports more concise expression of ordering of subtopics and default
parents.

36 / 36


