
Ethereum’s
Recursive Length Prefix

in ACL2

Alessandro Coglio

KESTREL
INSTITUTE

Ethereum is a major public blockchain
with smart contracts and a cryptocurrency.

Ethereum uses Recursive Length Prefix (RLP)
to encode a variety of data structures,
including transactions and blocks.

This work is a development, in ACL2, of
a formal specification of RLP encoding and
a verified implementation of RLP decoding.

RLP encodes nested byte sequences into flat byte sequences.

A nested byte sequence... ⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

RLP encodes nested byte sequences into flat byte sequences.

A nested byte sequence... ⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

=

≠

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩
• leaf tree
• length 3

128
3+

= 131

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

[131, 1, 2, 3]

⟨ ⟩

[255]⟨ ⟩ []

⟨ ⟩

[131, 1, 2, 3]

⟨ ⟩

[255]⟨ ⟩ []

⟨ ⟩

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

• branching tree
• subtree length 0

192
0+

= 192

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

[131, 1, 2, 3]

⟨ ⟩

[255]⟨ ⟩ []

[192]

[192]

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

[131, 1, 2, 3]

⟨ ⟩

[255]⟨ ⟩ []

• branching tree
• subtree length 5

192
5+

= 197

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

[197, 131, 1, 2, 3, 192]

⟨ ⟩

[255] []

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

[197, 131, 1, 2, 3, 192]

⟨ ⟩

[129, 255] []

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

[197, 131, 1, 2, 3, 192]

⟨ ⟩

[129, 255] [128]

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

[201, 197, 131, 1, 2, 3, 192, 129, 255, 128]

RLP encodes nested byte sequences into flat byte sequences.

A nested byte sequence...

... i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes
and no extra info at branching nodes...

... is encoded by prepending nodes
with a few bytes that describe
the node kind (leaf vs. branching)
and the number of subsequent bytes.

⟨ ⟩

[255]⟨ ⟩ []

[1, 2, 3] ⟨ ⟩

[201, 197, 131, 1, 2, 3, 192, 129, 255, 128]

encode decode

⟨⟨[1, 2, 3], ⟨ ⟩⟩, [255], []⟩

=

RLP is described in the Ethereum Wiki, using Python code.

RLP is described in the Ethereum Wiki, using Python code.

a leaf tree [x] with x < 128
is encoded as itself, i.e. [x]

a leaf tree [x1, ..., xn] with n < 56
is encoded as [128+n, x1, ..., xn]

a leaf tree [x1, ..., xn] with n < 264

is encoded as [183+m, y1, ..., ym, x1, ..., xn]
where [y1, ..., ym] is n in big endian base 256

a branch tree is encoded by
concatenating the subtree encodings

into [x1, ..., xn] and prepending with
either [192+n] when n < 56,

or [247+m, y1, ..., ym] when n < 264

where [y1, ..., ym] is n in big endian base 256

RLP is described in the Ethereum Wiki, using Python code.

an encoding is decoded by
“following the instructions”

in the first (few) byte(s),
recursively decoding subtrees

decoding is
more complicated

than encoding

the Python code
had an error,

fixed as a result
of this ACL2 work

RLP is described in the Ethereum Yellow Paper, formally.

RLP is described in the Ethereum Yellow Paper, formally.

definition of trees

encoding of leaf trees

encoding of all trees

RLP is described in the Ethereum Yellow Paper, formally.

encoding of branching trees

there is no explicit
definition of decoding:
it goes without saying

that decoding is
the inverse of encoding

RLP trees, in ACL2.

(fty::deftypes rlp-trees
(fty::deftagsum rlp-tree
(:leaf ((bytes byte-list)))
(:branch ((subtrees rlp-tree-list))))

(fty::deflist rlp-tree-list :elt-type rlp-tree))

RLP encoding, in ACL2.

(define rlp-encode-bytes ((bytes byte-listp))
:returns (mv (error? booleanp) (encoding byte-listp))
(b* ((bytes (byte-list-fix bytes)))
(cond ((and (= (len bytes) 1) (< (car bytes) 128)) (mv nil bytes))

((< (len bytes) 56) (mv nil (cons (+ 128 (len bytes)) bytes)))
((< (len bytes) (expt 2 64))
(b* ((be (nat=>bebytes* (len bytes))))
(mv nil (cons (+ 183 (len be)) (append be bytes)))))

(t (mv t nil)))))

RLP encoding, in ACL2.

(define rlp-encode-tree ((tree rlp-treep))
:returns (mv (error? booleanp) (encoding byte-listp))
(rlp-tree-case tree
:leaf (rlp-encode-bytes tree.bytes)
:branch (b* (((mv error? encoding) (rlp-encode-tree-list tree.subtrees))

((when error?) (mv t nil)))
(cond ((< (len encoding) 56)

(mv nil (cons (+ 192 (len encoding)) encoding)))
...)

(define rlp-encode-tree-list ((trees rlp-tree-listp))
:returns (mv (error? booleanp) (encoding byte-listp))
(b* (((when (endp trees)) (mv nil nil))
...)

RLP encoding, in ACL2.
byte-listp

rlp-encode-tree

rlp-treep

(just the 2nd result)

(define-sk rlp-tree-encoding-p ((encoding byte-listp))
(exists (tree) (and (rlp-treep tree)

(equal (rlp-encode-tree tree)
(mv nil (byte-list-fix encoding)))))

:skolem-name rlp-tree-encoding-witness)

rlp-tree-encoding-p

encodable
trees

valid
encodings

RLP encoding, in ACL2.
byte-listp

rlp-encode-tree

rlp-treep

(define-sk rlp-tree-encoding-p ((encoding byte-listp))
(exists (tree) (and (rlp-treep tree)

(equal (rlp-encode-tree tree)
(mv nil (byte-list-fix encoding)))))

:skolem-name rlp-tree-encoding-witness)

rlp-tree-encoding-p

rlp-tree-encoding-witness

rlp-tree-encoding-witness

encodable
trees

valid
encodings

(right inverse)

encodable trees valid encodings

rlp-encode-tree

RLP decodability, in ACL2.

(defthm rlp-encode-tree-injective
(implies (and (not (mv-nth 0 (rlp-encode-tree x)))

(not (mv-nth 0 (rlp-encode-tree y))))
(equal (equal (mv-nth 1 (rlp-encode-tree x))

(mv-nth 1 (rlp-encode-tree y)))
(equal (rlp-tree-fix x) (rlp-tree-fix y)))))

≠ ≠

encodable trees valid encodings

rlp-encode-tree

RLP decodability, in ACL2.

(defthm rlp-encode-tree-unamb-prefix
(implies (and (not (mv-nth 0 (rlp-encode-tree x)))

(not (mv-nth 0 (rlp-encode-tree y))))
(equal (prefixp (mv-nth 1 (rlp-encode-tree x))

(mv-nth 1 (rlp-encode-tree y)))
(equal (mv-nth 1 (rlp-encode-tree x))

(mv-nth 1 (rlp-encode-tree y))))))

≠ not prefix

RLP decoding, in ACL2, declarative.

encodable trees valid encodings

(define rlp-decode-tree ((encoding byte-listp))
:returns (mv (error? booleanp) (tree rlp-treep))
(b* ((encoding (byte-list-fix encoding)))
(if (rlp-tree-encoding-p encoding)

(mv nil (rlp-tree-encoding-witness encoding))
(mv t (rlp-tree-leaf nil))))) ; 2nd result irrelevant

rlp-encode-tree

rlp-decode-tree

encodable trees valid encodings

rlp-encode-tree

rlp-decode-tree

RLP decoding, in ACL2, declarative.

(defthm rlp-encode-tree-of-rlp-decode-tree ; right inverse
...) ; proof is straightforward, from witness axiom

(defthm rlp-decode-tree-of-rlp-encode-tree ; left inverse
...) ; proof is from right inverse above and injectivity

RLP decoding, in ACL2, executable.

(define rlp-parse-tree ((encoding byte-listp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep) (rest byte-listp))
(b* ((encoding (byte-list-fix encoding))

((when (endp encoding)) ...) ; error
((cons first encoding) encoding)
((when (< first 128)) (mv nil (rlp-tree-leaf (list first)) encoding))
((when (<= first 183))
(b* ((len (- first 128))

((when (< (len encoding) len)) ...) ; error
(bytes (take len encoding))
((when (and (= len 1) (< (car bytes) 128))) ...)) ; error

(mv nil (rlp-tree-leaf bytes) (nthcdr len encoding))))
((when (< first 192))
(b* ((lenlen (- first 183))

((when (< (len encoding) lenlen)) ...) ; error
(len-bytes (take lenlen encoding))
((unless (equal (trim-bendian* len-bytes) len-bytes)) ...) ; error
(encoding (nthcdr lenlen encoding))
(len (bebytes=>nat len-bytes))
((when (<= len 55)) ...) ; error
((when (< (len encoding) len)) ...) ; error

((when (< (len encoding) lenlen)) ...) ; error
(len-bytes (take lenlen encoding))
((unless (equal (trim-bendian* len-bytes) len-bytes)) ...) ; error
(encoding (nthcdr lenlen encoding))
(len (bebytes=>nat len-bytes))
((when (<= len 55)) ...) ; error
((when (< (len encoding) len)) ...) ; error
(subencoding (take len encoding))
(encoding (nthcdr len encoding))
((mv error? subtrees) (rlp-parse-tree-list subencoding))
((when error?) ...)) ; error

(mv nil (rlp-tree-branch subtrees) encoding)))

(define rlp-parse-tree-list ((encoding byte-listp))
:returns (mv (error? maybe-rlp-error-p) (trees rlp-tree-listp))
(b* (((when (endp encoding)) (mv nil nil))

((mv error? tree encoding1) (rlp-parse-tree encoding))
((when error?) ...) ; error
((unless (mbt (< (len encoding1) (len encoding)))) ...) ; error
((mv error? trees) (rlp-parse-tree-list encoding1))
((when error?) ...)) ; error

(mv nil (cons tree trees))))

RLP decoding, in ACL2, executable.

RLP decoding, in ACL2, executable.

(define rlp-decodex-tree ((encoding byte-listp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep))
(b* (((mv error? tree rest) (rlp-parse-tree encoding))

((when error?) ...) ; error
((when (consp rest)) ...)) ; error

(mv nil tree)))

; parser is (left and right) inverse of encoder:
(defthm rlp-parse-tree-of-rlp-encode-tree ...) ; accepts all valid encodings
(defthm rlp-encode-tree-of-rlp-parse-tree ...) ; accepts only valid encodings

; executable decoder is (left and right) inverse of encoder:
(defthm rlp-decodex-tree-of-rlp-encode-tree ...)
(defthm rlp-encode-tree-of-rlp-decodex-tree ...)

(define rlp-parse-tree ((encoding byte-listp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep) (rest byte-listp))
...)

RLP decoding, in ACL2, executable and verified.

(define rlp-decodex-tree ((encoding byte-listp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep))
...)

; executable decoder is (left and right) inverse of encoder:
(defthm rlp-decodex-tree-of-rlp-encode-tree ...)
(defthm rlp-encode-tree-of-rlp-decodex-tree ...)

; executable decoder is equivalent to declarative decoder:
(defthm rlp-decode-tree-is-rlp-decodex-tree
(and (iff (mv-nth 0 (rlp-decode-tree encoding))

(mv-nth 0 (rlp-decodex-tree encoding)))
(equal (mv-nth 1 (rlp-decode-tree encoding))

(mv-nth 1 (rlp-decodex-tree encoding)))))

See the RLP manual pages for much more information.

