Fthereum'’s

Recursive Length Prefix
in ACLZ

Alessandro Coglio

KESTREL AC[?

iNnsTITUTE . JORKSHOP 2020

Ethereum is a major public blockchain
with smart contracts and a cryptocurrency.

Ethereum uses Recursive Length Prefix (RLP)
/;g;o;fg?g‘g%i\\m to encode a variety of data structures,

1 . . .

"W including transactions and blocks.

This work is a development, in ACL2, of
o 2 formal specification of RLP encoding and
a verified implementation ot RLP decoding.

RLP encodes nested byte sequences into flat byte sequences.

A nested byte sequence... {[1, 2, 3], (), [255], [])

RLP encodes nested byte sequences into flat byte sequences.

A nested byte sequence... {[1, 2, 3], (), [255], [])

<« I—

... i.e. a finitely branching ordered tree / ‘ \

with flat byte sequences at leaf nodes [255]

and no extra info at branching nodes... / \ e

[1,2,3] () o ‘

A nested byte sequence...

.. i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes

and no extra info at branching nodes...

.. is encoded by prepending nodes
with a few bytes that describe

the node kind (leaf vs. branching)
and the number of subsequent bytes.

(1,2, 3], (), [255], [])

< |l—

S
N\,

11, 2, 3]
S
N\,

0.2,3)

. |ea1c tree 128
* length 3 + 3

=131

A nested byte sequence... {[1, 2, 3], (), [255], [])

<« I—

.. i.e. a finitely branching ordered tree / ‘ \

with flat byte sequences at leaf nodes [255]

and no extra info at branching nodes... / \

(1, 2, 3]

... is encoded by prepending nodes / ‘ \

with a few bytes that describe 255]

the node kind (leaf vs. branching)

and the number of subsequent bytes. / \
131, 1, 2, 3]

A nested byte sequence...

.. i.e. a finitely branching ordered tree
with flat byte sequences at leaf nodes

and no extra info at branching nodes...

.. is encoded by prepending nodes
with a few bytes that describe

the node kind (leaf vs. branching)
and the number of subsequent bytes.

(1,2, 3], (), [255], [])

< |l—

A

[255]

/\

(1, 2, 3]

/‘\

[255]

N

[131,1,2,3] ()
H_/
* branching tree

* subtree length O

192
+ 0

192

A nested byte sequence... {[1, 2, 3], (), [255], [])

<« I—

.. i.e. a finitely branching ordered tree / ‘ \

with flat byte sequences at leaf nodes [255]

and no extra info at branching nodes... / \

(1, 2, 3]

... is encoded by prepending nodes / ‘ \

with a few bytes that describe 255]
the node kind (leaf vs. branching)
and the number of subsequent bytes.

[131, 1, 2, 3] [192]

A nested byte sequence... {[1, 2, 3], (), [255], [])

<« I—

.. i.e. a finitely branching ordered tree / ‘ \

with flat byte sequences at leaf nodes [255]

and no extra info at branching nodes... / \

(1, 2, 3]

... is encoded by prepending nodes / ‘ \

with a few bytes that describe 255]
the node kind (leaf vs. branching)
and the number of subsequent bytes.

\[131,1,2, 3 [192]/

* branching tree 192
* subtree length 5 +5

=197

A nested byte sequence... {[1, 2, 3], (), [255], [])

<« I—

.. i.e. a finitely branching ordered tree / ‘ \

with flat byte sequences at leaf nodes [255]

and no extra info at branching nodes... / \

(1, 2, 3]

(.

.. is encoded by prependingnodes ‘ \

with a few bytes that describe
the node kind (leaf vs. branching) [197,131,1,2,3,192] [255] []

and the number of subsequent bytes.

A nested byte sequence... {[1, 2, 3], (), [255], [])

<« I—

... i.e. a finitely branching ordered tree / ‘ \
with flat byte sequences at leaf nodes [255]
and no extra info at branching nodes... / \
11, 2, 3]
(.2

..isencoded by prepending nodes \

with a few bytes that describe
the node kind (leaf vs. branching) [197,131,1,2,3,192] [129, 255] []

and the number of subsequent bytes.

A nested byte sequence... {[1, 2, 3], (), [255], [])

<« I—

... i.e. a finitely branching ordered tree / ‘ \
with flat byte sequences at leaf nodes [255]
and no extra info at branching nodes... / \
11, 2, 3]
()

.is encoded by prepending nodes I

with a few bytes that describe
the node kind (leaf vs. branching) [197,131, 1,2, 3,192] [129, 255] [128]

and the number of subsequent bytes.

A nested byte sequence... {[1, 2, 3], (), [255], [])

<« I—

.. i.e. a finitely branching ordered tree / ‘ \

with flat byte sequences at leaf nodes [255]

and no extra info at branching nodes... / \

(1, 2, 3]

.. is encoded by prepending nodes
with a few bytes that describe

the node kind (leaf vs. branching)
and the number of subsequent bytes.

201,197,131, 1, 2, 3, 192, 129, 255, 128]

RLP encodes nested byte sequences into flat byte sequences.

A nested byte sequence... {[1, 2, 3], (), [255], [])

<« I—

... i.e. a finitely branching ordered tree / ‘ \

with flat byte sequences at leaf nodes [255]
and no extra info at branching nodes... / \
11, 2, 3]
|)

encode decode
.. is encoded by prepending nodes) |
with a few bytes that describe
the node kind (leaf vs. branching) (201, 197,131, 1, 2, 3, 192, 129, 255, 128]

and the number of subsequent bytes.

RLP is described in the Ethereum Wiki, using Python code.

O Why GitHub? Team Enterprise Explore Marketplace Pricing Sign in

£ ethereum / wiki ©Watch | 1.3k KsStar 132k | YFork 2.3k

Code Issues 18 Pull requests 3 Actions Projects 0 ER Wiki Security 0 Insights

RLP

Chris Chinchilla edited this page on Aug 2, 2019 - 36 revisions

Contents » Pages €ID)
o Definition
e Examples Basics

RLP decoding

. Home
Implementations °

e Ethereum Whitepaper

The purpose of RLP (Recursive Length Prefix) is to encode arbitrarily nested arrays of binary data, * Ethereum Introduction
and RLP is the main encoding method used to serialize objects in Ethereum. The only purpose of Uses: DAOs and dapps
RLP is to encode structure; encoding specific data types (eg. strings, floats) is left up to higher- * Getting Ether
order protocols; but positive RLP integers must be represented in big endian binary form with no * Releases

e FAQs

leading zeroes (thus making the integer value zero be equivalent to the empty byte array).

Deserialised positive integers with leading zeroes must be treated as invalid. The integer

representation of string length must also be encoded this way, as well as integers in the payload * EVMintro: Ethereum Yellow
P . . . gleng . Vi . 9 pay : Paper, Beige Paper and Py-

Additional information can be found in the Ethereum yellow paper Appendix B. EVM.

¢ Design Rationale

o Wiki for (old) website (still a

If one wishes to use RLP to encode a dictionary, the two suggested canonical forms are to either good introduction)

use [[k1,v1],[k2,v2]...]1 with keys in lexicographic order or to use the higher-level Patricia Tree
encoding as Ethereum does.

e Glossary

R&D

In summary, RLP is like a binary encoding of JSON, if JSON were restricted only to strings and

arrays. o .
e Sharding introduction &

R&D Compendium, FAQs &
Definition roadmap

e Casper Proof-of-Stake
The RLP encoding function takes in an item. An item is defined as follows: compendium and FAQs.

RLP is described in the Ethereum Wiki, using Python code.

a leaf tree [x] with x < 128
is encoded as itself, i.e. [X]

a leaf tree [xq, ..., x,] with n < 56
is encoded as [128+n, x4, ..., X,]

a leaf tree [x4, ..., x,] with n < 264
is encoded as [183+m, y4, ..., Vi X1, -oes X))
where [y, ..., V] is nin big endian base 256

a branch tree is encoded by

concatenating the subtree encodings

into [xq, ..., X,] and prepending with

either [192+n] when n < 56,

or [247+m, y,, ..., ¥ when n < 2%

where [y;, ..., ¥m] is nin big endian base 256

e For a single byte whose value is in the [0x00, 0x7f] range, that byte is its own RLP encoding.

e Otherwise, if a string is 0-55 bytes long, the RLP encoding consists of a single byte with value

0x80 plus the length of the string followed by the string. The range of the first byte is thus
[ox80, Oxb7] .

e |f a string is more than 55 bytes long, the RLP encoding consists of a single byte with value
Oxb7 plus the length in bytes of the length of the string in binary form, followed by the length
of the string, followed by the string. For example, a length-1024 string would be encoded as

\xb9\x04\x00 followed by the string. The range of the first byte is thus [0xb8, @0xbf] .

o |f the total payload of a list (i.e. the combined length of all its items being RLP encoded) is 0-55

bytes long, the RLP encoding consists of a single byte with value 0xcO plus the length of the
list followed by the concatenation of the RLP encodings of the items. The range of the first
byte is thus [0xc0, 0xf7] .

o |If the total payload of a list is more than 55 bytes long, the RLP encoding consists of a single
byte with value 0xf7 plus the length in bytes of the length of the payload in binary form,
followed by the length of the payload, followed by the concatenation of the RLP encodings of
the items. The range of the first byte is thus [0xf8, oxff] .

In code, this is:

def rlp_encode(input):
if isinstance(input,str):
if len(input) == 1 and ord(input) < 0x8@: return input
else: return encode_length(len(input), 0x80) + input
elif isinstance(input,list):
output = "'
for item in input: output += rlp_encode(item)
return encode_length(len(output), 0xc@) + output

def encode_length(L,offset):
if L < 56:
return chr(L + offset)
elif L < 256%x8:
BL = to_binary(L)
return chr(len(BL) + offset + 55) + BL
else:
raise Exception("input too long")

def to_binary(x):
if x == 0:
return

else:
return to_binary(int(x / 256)) + chr(x % 256)

tools, wallets, dapp
browsers and other
projects

DApp Development

Infrastructure

e Chain Spec Format

o Inter-exchange Client
Address Protocol

e URL Hint Protocol

o NatSpec Determination

e Network Status

e Raspberry Pi

® Mining

e Licensing

e Consortium Chain
Development

Networking

e Ethereum Wire Protocol
o libp2p

e devp2p Specifications

e devp2p Whitepaper (old)

Ethereum
Technologies

e RLP Encoding

e Patricia Tree

e Web3 Secret Storage

e Light client protocol

o Subtleties

e Solidity Documentation
o NatSpec Format

e Contract ABI

e Bad Block Reporting

e Bad Chain Canary

RLP is described in the Ethereum Wiki, using Python code.

def rlp_decode(input):
if len(input) == 0:
return
output = "'
(offset, datalLen, type) = decode_length(input)

an encoding is decoded by if type s str:

output = instantiate_str(substr(input, offset, datalen))

ll.f || . P} M . 7 elif type is list:
O OWIng t e InStru Ctlons output = instantiate_list(substr(input, offset, datalLen))
output = output + rlp_decode(substr(input, offset + dataLen))

in the first (few) byte(s), return output
recursively decoding subtrees def decode_length(input):

length = len(input)

if length == 0:
raise Exception("input is null")

prefix = ord(input[@])

if prefix <= 0x7f:
return (@, 1, str)

deCOding iS elif prefix <= 0xb7 and length > prefix - 0x80:
strLen = prefix - 0x80
. if strLen == 1 and ord(input[1]) <= 0x7f:
more Com pl |Cated raise Exception("single byte below 128 must be encoded as itself")
. return (1, strLen, str)
than enCOdlng elif prefix <= @xbf and length > prefix — 0xb7 and length > prefix - @xb7 + to_integer(substr(input, 1, prefix — 0xb7)):
len0fStrLen = prefix - 0xb7
if input[1] == 0:
raise Exception("multi-byte length must have no leading zero");
strLen = to_integer(substr(input, 1, lenO0fStrLen))
if strLen < 56:
raise Exception("length below 56 must be encoded in one byte");
the Python COde return (1 + lenOfStrLen, strLen, str)

elif prefix <= 0xf7 and length > prefix - 0xc@:

listLen = prefix - 0xc@;

had aﬂ error, return (1, listLen, list)

elif prefix <= Oxff and length > prefix - 0xf7 and length > prefix — 0xf7 + to_integer(substr(input, 1, prefix — 0xf7)):

'leed as a resu |t lenOfListLen = prefix - Oxf7

if input[1] == 0:

Of this AC L2 WO rk raise Exception("multi-byte length must have no leading zero");
listLen = to_integer(substr(input, 1, lenOfListLen))
if listlLen < 56:

raise Exception("length below 56 must be encoded in one byte");
return (1 + lenOfListLen, listLen, list)
else:

raise Exception("input don't conform RLP encoding form")

T AT e e T e T TR

RLP is described in the Ethereum Yellow Paper, formally.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER
BYZANTIUM VERSION 7e819ec - 2019-10-20

DR. GAVIN WOOD
FOUNDER, ETHEREUM & PARITY
GAVINQ@QPARITY.IO

ABSTRACT. The blockchain paradigm when coupled with cryptographically-secured transactions has demonstrated its
utility through a number of projects, with Bitcoin being one of the most notable ones. Each such project can be seen as
a simple application on a decentralised, but singleton, compute resource. We can call this paradigm a transactional

singleton machine with shared-state.

Ethereum implements this paradigm in a generalised manner. Furthermore it provides a plurality of such resources,
each with a distinct state and operating code but able to interact through a message-passing framework with others.
We discuss its design, implementation issues, the opportunities it provides and the future hurdles we envisage.

1. INTRODUCTION

With ubiquitous internet connections in most places
of the world, global information transmission has become
incredibly cheap. Technology-rooted movements like Bit-
coin have demonstrated through the power of the default,
consensus mechanisms, and voluntary respect of the social
contract, that it is possible to use the internet to make
a decentralised value-transfer system that can be shared
across the world and virtually free to use. This system can
be said to be a very specialised version of a cryptographi-
cally secure, transaction-based state machine. Follow-up

is often lacking, and plain old prejudices are difficult to
shake.

Overall, we wish to provide a system such that users
can be guaranteed that no matter with which other indi-
viduals, systems or organisations they interact, they can
do so with absolute confidence in the possible outcomes
and how those outcomes might come about.

1.2. Previous Work. Buterin [2013a] first proposed the
kernel of this work in late November, 2013. Though now
evolved in many ways, the key functionality of a block-

i R T T o o I A Y R [Dk Y & A N PR

RLP is described in the Ethereum Yellow Paper, formally.

definition of trees <

/‘

encoding of all trees

encoding of leaf trees <

We define the set of possible structures T:

(176) T = LyB
177) L = {t:t=(t[0],t[1],...) A Vn < |t|:t[n] € T}
(178) B = {b:b=(b[0],b[l],..) A ¥n < ||b]: bln] € 0}

Where O is the set of (8-bit) bytes. Thus B is the set of all sequences of bytes (otherwise known as byte arrays, and
a leaf if imagined as a tree), L is the set of all tree-like (sub-)structures that are not a single leaf (a branch node if
imagined as a tree) and T is the set of all byte arrays and such structural sequences. The disjoint union & is needed only
to distinguish the empty byte array () € B from the empty list () € L, which are encoded differently as defined below; as
common, we will abuse notation and leave the disjoint union indices implicit, inferable from context.

We define the RLP function as RLP through two sub-functions, the first handling the instance when the value is a byte
array, the second when it is a sequence of further values:

Rb(x) if xeB
Ri(x) otherwise

(179) RLP(x) = {

If the value to be serialised is a byte array, the RLP serialisation takes one of three forms:

e If the byte array contains solely a single byte and that single byte is less than 128, then the input is exactly equal
to the output.
e If the byte array contains fewer than 56 bytes, then the output is equal to the input prefixed by the byte equal to
the length of the byte array plus 128.
e Otherwise, the output is equal to the input, provided that it contains fewer than 2°* bytes, prefixed by the
minimal-length byte array which when interpreted as a big-endian integer is equal to the length of the input byte
array, which is itself prefixed by the number of bytes required to faithfully encode this length value plus 183.
Byte arrays containing 2°4 or more bytes cannot be encoded. This restriction ensures that the first byte of the encoding
of a byte array is always below 192, and thus it can be readily distinguished from the encodings of sequences in L.
Formally, we define Ry:

x if ||x||=1Ax[0] <128
128 . Ise if 56
(180) Ry(x) = (128 + [|x[[) - x alisg i lIx]| < 6
(183 + ||BE(||x[))||) - BE(|Ix[|) - x else if ||x|| < 2
1%} otherwise
bl —1
(181) BE(z) = (bo,b1,...):bo#O0AZ= Y b,-256/°171""
n=0
(182) (1, ooy Zn) - WY1y ooy Ym) = (T, ey Try Y1y ey Ym)

RLP is described in the Ethereum Yellow Paper, formally.

there is no explicit
definition of decoding:
it goes without saying
that decoding is

the inverse of encoding

encoding of branching trees <

the length of the byte array plus 128.
e Otherwise, the output is equal to the input, provided that it contains fewer than 2°* bytes, prefixed by the
minimal-length byte array which when interpreted as a big-endian integer is equal to the length of the input byte
array, which is itself prefixed by the number of bytes required to faithfully encode this length value plus 183.
Byte arrays containing 24 or more bytes cannot be encoded. This restriction ensures that the first byte of the encoding
of a byte array is always below 192, and thus it can be readily distinguished from the encodings of sequences in L.
Formally, we define Ry:

x if ||x||=1Ax[0] <128
128 . Ise if 56
(183 + ||BE(||x[1)||) - BE(||x|l) - x else if [|x| < 2
1%} otherwise
Ibll—1
(181) BE(z) = (bo,b1,...):1bo#O0AT= Y by 25617177
n=0
(182) ($1,...,$n)'(y1,...,ym) = (xl""’xnayla"'aym)

Thus BE is the function that expands a non-negative integer value to a big-endian byte array of minimal length and
the dot operator performs sequence concatenation.
If instead, the value to be serialised is a sequence of other items then the RLP serialisation takes one of two forms:

e If the concatenated serialisations of each contained item is less than 56 bytes in length, then the output is equal
to that concatenation prefixed by the byte equal to the length of this byte array plus 192.

e Otherwise, the output is equal to the concatenated serialisations, provided that they contain fewer than 25* bytes,
prefixed by the minimal-length byte array which when interpreted as a big-endian integer is equal to the length
of the concatenated serialisations byte array, which is itself prefixed by the number of bytes required to faithfully
encode this length value plus 247.

Sequences whose concatenated serialized items contain 2% or more bytes cannot be encoded. This restriction ensures
that the first byte of the encoding does not exceed 255 (otherwise it would not be a byte).
Thus we finish by formally defining R;:

(192 + Is(x)1I) - s(x) if s(x) #9A|ls(x)|| <56
(183) Ri(x) = (247 + ||BE(||s(x)||)||) -BE(||s(x)]]) - s(x) elseif s(x)# @A |s(x)] < D5e
o} otherwise

(184) s(x)

%} otherwise

{RLP(x[O])-RLP(x[l])-... if Vi:RLP(x[i]) # @

RLP trees, in ACL2.

(fty::deftypes rlp-trees
(fty::deftagsum rip-tree
(:leaf ((bytes byte-1ist)))
(:branch ((subtrees rlp-tree-1list))))
(fty::deflist rip-tree-list :elt-type rilp-tree))

T = LwB
L = {t:t=(t[0],t[1],..) A Vn < |t|:t[n] € T}
B = {b:b=(bl0],b[l],..) A ¥n < |b||:bln] c O}

RLP encoding, in ACL2.

(define rlp-encode-bytes ((bytes byte-Tlistp))
:returns (mv (error? booleanp) (encoding byte-listp))
(b* ((bytes (byte-list-fix bytes)))
(cond ((and (= (len bytes) 1) (< (car bytes) 128)) (mv nil bytes))
((< (len bytes) 56) (mv nil (cons (+ 128 (len bytes)) bytes)))
((< (len bytes) (expt 2 64))
(b* ((be (nat=>bebytes* (len bytes))))
(mv nil (cons (+ 183 (len be)) (append be bytes)))))

(t (mv t nil)))))

(x if ||x|]| =1Ax[0] < 128
Ro(x) = ¢ (128 + ||x]|) - x else if ||x|| < 56
(183 + ||BE(||x])||) - BE(||x[|) - x else if |[|x]|| < 2°¢
Z otherwise

RLP encoding, in ACL2.

(define rlp-encode-tree ((tree rlp-treep))
:returns (mv (error? booleanp) (encoding byte-listp))
(rlp-tree-case tree
: leat (rlp-encode-bytes tree.bytes)
:branch (b* (((mv error? encoding) (rlp-encode-tree-list tree.subtrees))
((when error?) (mv t nil)))
(cond ((< (len encoding) 56)
(mv nil (cons (+ 192 (len encoding)) encoding)))
cen)
(define rlp-encode-tree-1list ((trees rlp-tree-1listp))
:returns (mv (error? booleanp) (encoding byte-listp))
(b* (((when (endp trees)) (mv nil nil))

ce)
(192 + [ls(=x)]]) - s(x) if s(x) # I N|[s(x)]| <56
. Ri(x) = (247 + ||BE([|ls(x)]1)]|) - BE(|s(x)|]) - s(x) else if s(x) # @A ||s(x)] < 2%
RLP(x) = {Rb () if xcB g otherwise

RLP(x[0]) - RLP(x[1]) - ... if Vi :RLP(x[¢]) # @&
%) otherwise

R)(x) otherwise {

RLP encoding, in ACL2.

byte-11stp

rip-treep

valid

/" encodings
rilp-encode-tree

(just the 2nd result)

\
1
|
> !
I
1

1
1
1
\
\

/
\ /7

Dl g —— - e Coocococooooo o S ST

rlp-tree-encodrng-p

(define-sk rlp-tree-encoding-p ((encoding byte-1istp))
(exists (tree) (and (rlp-treep tree)
(equal (rlp-encode-tree tree)

(mv ni1l (byte-1list-fix encoding)))))
:skolem-name rlp-tree-encoding-witness)

RLP encoding, in ACL2.

byte-11stp
rip-treep
valid
/ encodings
rip-encode-tree N 3
rlp-tree-encoding-witness \ /

(right inverse)

rlp-tree-encodrng-p

(define-sk rlp-tree-encoding-p ((encoding byte-1istp))
(exists (tree) (and (rlp-treep tree)
(equal (rlp-encode-tree tree)

(mv ni1l (byte-1list-fix encoding)))))
:skolem-name rlp-tree-encoding-withess)

RLP decodability, in ACL2.

encodable trees valid encodings

(defthm rlp-encode-tree-injective
(implies (and (not (mv-nth 0 (rlp-encode-tree x)))
(not (mv-nth O (rlp-encode-tree y))))
(equal (equal (mv-nth 1 (rlp-encode-tree x))
(mv-nth 1 (rlp-encode-tree y)))
(equal (rlp-tree-fix x) (rlp-tree-fix y)))))

RLP decodability, in ACL2.

encodable trees valid encodings

(defthm rlp-encode-tree-unamb-prefix
(implies (and (not (mv-nth 0 (rlp-encode-tree x)))
(not (mv-nth O (rlp-encode-tree y))))
(equal (prefixp (mv-nth 1 (rlp-encode-tree x))
(mv-nth 1 (rlp-encode-tree y)))
(equal (mv-nth 1 (rlp-encode-tree x))
(mv-nth 1 (rlp-encode-tree y))))))

RLP decoding, in ACL2, declarative.

encodable trees valid encodings

rlp-encode-tree

rip-decode-tree

(define rlp-decode-tree ((encoding byte-Tlistp))
:returns (mv (error? booleanp) (tree rlp-treep))
(b* ((encoding (byte-Tist-fix encoding)))
(1f (rlp-tree-encoding-p encoding)
(mv n1l (rlp-tree-encoding-witness encoding))
(mv t (rlp-tree-leaf nil))))) ; 2nd result irrelevant

RLP decoding, in ACL2, declarative.

encodable trees valid encodings

rlp-encode-tree

rip-decode-tree

(defthm rlp-encode-tree-of-rlp-decode-tree ; right inverse
..) ; proof 1is straightforward, from witness axiom

(defthm rlp-decode-tree-of-rilp-encode-tree ; left inverse
..) ; proof is from right inverse above and injectivity

RLP decoding, in ACL2, executable.

(define rlp-parse-tree ((encoding byte-1listp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep) (rest byte-listp))
(b* ((encoding (byte-1list-fix encoding))
((when (endp encoding)) ...) ; error
((cons first encoding) encoding)
((when (< first 128)) (mv nil (rlp-tree-leaf (list first)) encoding))
((when (<= first 183))
(b* ((len (- first 128))
((when (< (len encoding) len)) ...) ; error
(bytes (take len encoding))
((when (and (= 1len 1) (< (car bytes) 128))) ...)) ; error
(mv nil (rlp-tree-leaf bytes) (nthcdr Ten encoding))))
((when (< first 192))
(b* ((lenlen (- first 183))

((when (< (len encoding) lenlen)) ...) ; error
(len-bytes (take lTenlen encoding))
(Cunless (equal (trim-bendian* len-bytes) len-bytes)) ...) ; error

(encoding (nthcdr lenlen encoding))
(len (bebytes=>nat len-bytes))
((when (<= len 55)) ...) ; error

RLP decoding, in ACL2, executable.

(Ten (bebytes=>nat len-bytes))
((when (<= len 55)) ...) ; error
((when (< (len encoding) len)) ...) ; error
(subencoding (take len encoding))
(encoding (nthcdr len encoding))
((mv error? subtrees) (rlp-parse-tree-1list subencoding))
((when error?) ...)) ; error
(mv nil (rlp-tree-branch subtrees) encoding)))

(define rlp-parse-tree-1list ((encoding byte-listp))

:returns (mv (error? maybe-rlp-error-p) (trees rlp-tree-1listp))

(b* (((when (endp encoding)) (mv nil nil))
((mv error? tree encodingl) (rlp-parse-tree encoding))
((when error?) ...) ; error
(Cunless (mbt (< (len encodingl) (len encoding)))) ...) ; error
((mv error? trees) (rlp-parse-tree-list encodingl))
((when error?) ...)) ; error

(mv nil (cons tree trees))))

RLP decoding, in ACL2, executable.

(define rlp-parse-tree ((encoding byte-Tistp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep) (rest byte-listp))

..

(define rlp-decodex-tree ((encoding byte-T1istp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep))
(b* (((mv error? tree rest) (rlp-parse-tree encoding))
((when error?) ...) ; error
((when (consp rest)) ...)) ; error
(mv nil tree)))

; parser 1is (left and right) inverse of encoder:
(defthm rlp-parse-tree-of-rip-encode-tree ...) ; accepts all valid encodings
(defthm rlp-encode-tree-of-rilp-parse-tree ...) ; accepts only valid encodings

; executable decoder 1s (left and right) inverse of encoder:
(defthm rlp-decodex-tree-of-rlp-encode-tree ...)
(defthm rlp-encode-tree-of-rlp-decodex-tree ...)

RLP decoding, in ACL2, executable and verified.

(define rlp-decodex-tree ((encoding byte-1istp))
:returns (mv (error? maybe-rlp-error-p) (tree rlp-treep))

..

; executable decoder 1s (left and right) inverse of encoder:
(defthm rlp-decodex-tree-of-rlp-encode-tree ...)
(defthm rlp-encode-tree-of-rlp-decodex-tree ...)

; executable decoder 1s equivalent to declarative decoder:
(defthm rlp-decode-tree-is-rlp-decodex-tree
(and (Aff (mv-nth 0 (rlp-decode-tree encoding))
(mv-nth 0 (rlp-decodex-tree encoding)))
(equal (mv-nth 1 (rlp-decode-tree encoding))
(mv-nth 1 (rlp-decodex-tree encoding)))))

See the RLP manual pages for much more information.

Jump to CEMMN Search (NN = T
=Top Ethereum
FACL2
rBooks
={}=Boolean.-reasoning RI p ETHEREUM
4+Debugging [books]/kestrel/ethereum/rlp/top.Llisp Package

s*Documentation
srHardware-verification
srInterfacing-tools
s*Macro-libraries

Recursive Length Prefix (RLP).

RLP is a serialization (encoding) method for Ethereum, described in [YP:B] and in

i ” s e
4};;/:,2;:@5 Page ‘RLP’ of [Wiki]“; we reference that page of [Wiki] as [Wiki:RLP]’).
“#Proof-automation .
srSoftware-verification i

[
ony Subtopics

+Testing-utilities . . .
Rlp-big-endian-representations

Big-endian representation of scalars in RLP.

Rlp-tree
RLP trees.

RIp-encoding
RLP encoding.

RIp-decodability
Proofs that RLP encodings can be decoded.

RIp-decoding-declarative
Declarative definitions of RLP decoding.

RIp-decoding-executable
Executable definitions of RLP decoding.

