
Generating
Mutually
Inductive
Theorems
From
Concise
Descriptions
Sol Swords
Centaur Technology, Inc.

ACL2 Workshop 2020

Paper: http://acl2-2020.info/papers/generating-mutually-inductive-theorems.pdf

http://acl2-2020.info/papers/generating-mutually-inductive-theorems.pdf

Proofs about Mutual Recursions Aren’t Hard

What gets in the way?

● Induction schemes aren’t provided by ACL2 as with singly-recursive functions

○ Needs some extra work, but this can be automated

● Usually need a (slightly different) theorem about each function in the clique

○ Tedious to list all the theorems by hand when the clique is large

Contribution: defret-mutual-generate

● Generates a mutually-inductive clique of theorems from a set of rules

● Rules based on info recorded by defines: input/output names and types

● Wraps around existing macro defret-mutual

○ Which itself wraps flag defthm macros generated by make-flag

Case Study: FGL Rewriter

● 49-function clique defined in centaur/fgl/interp.lisp

● 22 sets of theorems generated using defret-mutual-generate
○ 17 mutual inductions, 5 per-function corollaries

● Average 41 lines per defret-mutual-generate form
○ Dominated by one 430-line form
○ Average 23 lines omitting the one outlier
○ The simplest of these produce ~300 lines of defthm forms (not counting local helper events).

● Keeps DRY and maintainable
○ Most changes to rewriter require only small changes to few of the theorem forms.

Quick background: make-flag

Generates a flag function from a mutual recursion for use as an induction scheme

(defun-nx subst-term-flag (flag x alist)
 (cond ((equal flag ‘subst-term)
 (cond …
 (t (cons (car x)
 (subst-term-flag ‘subst-termlist (cdr x) alist)))))
 (t ;; (equal flag ‘subst-termlist)
 (if (atom x)
 nil
 (cons (subst-term-flag ‘subst-term (car x) alist)
 (subst-term-flag ‘subst-termlist (cdr x) alist))))))

Quick background: make-flag

Also a flag defthm macro:

(defthm-subst-term-flag
 (defthm ev-term-of-subst-term
 (equal (ev-term (subst-term x alist) env)
 (ev-term x (ev-alist alist env)))
 :flag subst-term)
 (defthm ev-termlist-of-subst-termlist
 (equal (ev-termlist (subst-termlist x alist) env)
 (ev-termlist x (ev-alist alist env)))
 :flag subst-termlist))

Quick background: make-flag

(defthm flag-lemma-for-ev-term-of-subst-term
 (cond ((equal flag ‘subst-term)
 (equal (ev-term (subst-term x alist) env)
 (ev-term x (ev-alist alist env))))
 (t ;; subst-termlist
 (equal (ev-termlist (subst-termlist x alist) env)
 (ev-termlist x (ev-alist alist env)))))
 :hints ((“goal” :induct (subst-term-flag flag x alist))
 …)
 :rule-classes nil)

Quick background: define, defines

Define/defines are like defun/mutual-recursion but allow specifying/storing some extra info. Relevant to

us: types of formals, types and names of return values

(defines fgl-interp
 (define fgl-interp-term ((x pseudo-termp)
 (interp-st interp-st-bfrs-ok)
 state)
 :returns (mv
 (xobj fgl-object-p)
 new-interp-st new-state)
 ...)
 ...)

Quick background: defret, defret-mutual

Mostly like defthm but creates hidden bindings of return names to their values

(defret interp-st-scratch-isomorphic-of-<fn>
 (interp-st-scratch-isomorphic new-interp-st (double-rewrite interp-st))
 :fn fgl-interp-term)
→
(defthm interp-st-scratch-isomorphic-of-fgl-interp-term
 (b* (((mv ?xobj ?new-interp-st ?new-state)
 (fgl-interp-term x interp-st state)))
 (interp-st-scratch-isomorphic new-interp-st
 (double-rewrite interp-st))))

Defret-mutual-generate: Minimal example

(std::defret-mutual-generate interp-st-scratch-isomorphic-of-<fn>
 :return-concls ((new-interp-st
 (interp-st-scratch-isomorphic
 new-interp-st
 (double-rewrite interp-st))))
 :hints ((fgl-interp-default-hint 'fgl-interp-term id nil world))
 :mutual-recursion fgl-interp)

Rules

Rules take the form condition → action, e.g.:

(condition) If a function has a return value named new-interp-st, then

(action) Add the following expression as a conclusion.

Example conditions

● Function’s name is foo

● Function has a formal of type fancy-objtype

● Function has a return value named blob

Example actions

● Add term as a conclusion or hypothesis

● Add b* bindings around the hypotheses and conclusion

● For each formal of type integerp, add hypothesis (natp x) where x is the formal name

● For each return value of type stringp, add conclusion (< (length x) 5) where x is the

return value name

● Add a keyword to the defthm form

● Set the the theorem name to the given template

Shortcuts

● :formal-hyps generates hypotheses for formals of the given name or type

● :return-concls generates conclusions for return values of the given name or type

(std::defret-mutual-generate interp-st-bfrs-ok-of-<fn>
 :rules
 ((t (:add-bindings
 ((?new-logicman (interp-st->logicman new-interp-st))
 (?logicman (interp-st->logicman interp-st)))))
 ((or (:fnname fgl-rewrite-try-rules)
 (:fnname fgl-rewrite-try-rule)
 (:fnname fgl-rewrite-try-rewrite)
 (:fnname fgl-rewrite-try-meta)
 (:fnname fgl-rewrite-binder-try-rules)
 (:fnname fgl-rewrite-binder-try-rule)
 (:fnname fgl-rewrite-binder-try-rewrite)
 (:fnname fgl-rewrite-binder-try-meta)
 (:fnname fgl-rewrite-try-rules3))
 (:add-hyp (scratchobj-case (stack$a-top-scratch (double-rewrite (interp-st->stack interp-st)))
 :fgl-objlist))))
 :formal-hyps ;; generates hypotheses
 (((interp-st-bfr-p x) (lbfr-p x logicman))
 ((fgl-object-p x) (lbfr-listp (fgl-object-bfrlist x) logicman))
 ((fgl-objectlist-p x) (lbfr-listp (fgl-objectlist-bfrlist x) logicman))
 ((fgl-object-bindings-p x) (lbfr-listp (fgl-object-bindings-bfrlist x) logicman))
 (interp-st (interp-st-bfrs-ok interp-st))
 ((constraint-instancelist-p x) (lbfr-listp (constraint-instancelist-bfrlist x) logicman)))
 :return-concls ;; generates conclusions
 ((xbfr (lbfr-p xbfr new-logicman))
 ((fgl-object-p x) (lbfr-listp (fgl-object-bfrlist x) new-logicman))
 ((fgl-objectlist-p x) (lbfr-listp (fgl-objectlist-bfrlist x) new-logicman))
 (new-interp-st (interp-st-bfrs-ok new-interp-st)))
 :hints ((fgl-interp-default-hint 'fgl-interp-term id nil world))
 :mutual-recursion fgl-interp)

Future possibilities

● Apply same idea to automate theorems on sets of functions that are not all mutually recursive

● Allow annotations of formals and returns and recognize them in rule conditions

Conclusion

● Greatly reduces the size of forms, amount of editing for proving theorems about large cliques.

● Low requirements: use defines, add formal types, return value names/types.

● Documentation: std::defret-mutual-generate

● Mutual recursions are fine! Even big ones. No need to avoid them.

○ Big cliques are preferable to big functions.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=STD____DEFRET-MUTUAL-GENERATE

