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Isomorphic data type transformations are useful in program synthesis.
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Isomorphic data type transformations are useful in program synthesis.
They are also useful in program analysis.
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Isomorphic data type transformations are useful in program synthesis.

They are also useful in program analysis, as well as in analysis-by-synthesis.
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Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
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Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.
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Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.
We can mechanically construct a function /' : X" — Y’ that makes the diagram commute.
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Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.
We can mechanically construct a function /' : X" — Y’ that makes the diagram commute.
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Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.
We can mechanically construct a function /' : X" — Y’ that makes the diagram commute.
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Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.
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This is a general method:

automatically create an isomorphic version
and semi-automatically rewrite/simplify it.
We can do it for f, [, />, etc.,

obtaining 1, 1", fi', i, f>', 2", etc,,
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Consider a function g that calls f, f1, />, etc.
We can apply the same general method to g.
If g manipulates the data being transformed
only through f, 13, />, etc., we can automate
the rewriting/simplification step as well.

g(..)= ... f(...) ..
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g.)= v(fE1D))) ..
expand the definitions - Q
and rewrite/simplify wa
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This is a general method:

automatically create an isomorphic version
and semi-automatically rewrite/simplify it.
We can do it for f, [, />, etc.,

obtaining 1, 1", fi', i, f>', 2", etc,,

flx) = ..

keep the same structure a
and add the conversions €}

flix) = ..

expand the definitions - O
and rewrite/simplify wﬁ

f'ix") = ..

Consider a function g that calls f, f1, />, etc.
We can apply the same general method to g.
If g manipulates the data being transformed
only through f, 13, />, etc., we can automate
the rewriting/simplification step as well.

And we can do everything in one step.

g(.) = o fCL)

keep the same structure Q
and replace f with f” etc. €}

gC.)= .. f'(.) ..



We use isodata to initiate
the isomorphic transformation.

flx) = ..

‘ (isodataf ...) O’O

f'ix) = ..

‘ (simplify [’ ..) O‘O‘

f'ix") = ..

The simplify transformation
was described at ACL2-2017.

We use propagate-iso to propagate

the isomorphic transformation.




We use defiso We use isodata We use propagate-iso

to establish to initiate to propagate
the isomorphic the isomorphic the isomorphic
mappings. transformation. transformation.
X Y z flx) = .. g(.)= o F()
‘ (isodataf ...)
SIS v v YIS

f'ix) = ..

‘ (propagate-iso g ...
X ’ “ ‘ (simplify f' ...
(defiso X X' &1 ..

(defisoYY'v v ... f'ix") = .. gt.)= ...f'(.) ..
(defisoZZ'C(71..)

and for other types and for f1, f-, etc. and for g4, g», etc.



1.

3.

4.

5.

propagate-iso

Find events to propagate to

e User supplied limits

* Dependent events: function definitions and theorems

Type analysis: which arguments and results to be transformed

* Arguments: guards
e Results: typing theorems and body of definition

Dependent isomorphisms
» Subtypes, record/product types, recursive types: e.g. list, map types

Translation: substitution
* Add isomorphism theorems for newly generated functions

Hints. Hard to guarantee they will work
* Three rulesets: forward, backward, general (typing, defiso rules)
* Allow user to augment or override automatically generated hints



Dependent Isomorphism: Deriving isomorphism from predicate

Consider two isomorphic sets (data types) X and X' with& : X — X and &1 : X' — X.
Consider a predicate AlLX (1) = if atom(l) then null(l) else X (car(l)) A AllLX (cdr(l)).
Then define predicate AlIX (1) = if atom(l) then null(l) else X'(car(l)) A AlLX'(cdr(l)).
We want to find definitions for the isomorphisms All¢ : AlLX — AllX" and AlIE™Y = AlIX" — AllX.

null(l) X'(car(l)) A AlLX'(cdr(D))
AllE(D) = if atom(l) then b(1) else c(X(car(l)), AllX (cdr(l)))
null(b(l)) = b(l) = nil
if atom(l) then nil else E
E =c(X(car(l)),AllX(cdr(l)))
A consp(E) A X' (car(E)) A AlX'(cdr(E))
. E = cons(&(car(l)), AUE(cdr(D))

AllE(l) = if atom (1) then nil else cons(é(car(l)), Allé (cdr(l)))




Consider two isomorphic sets (data types) P and P'with P-to-P': P — P

(defun P-map-p (m) (defun P'-map-p (m)
(if (atom m) (1f (atom m)
(null m) (null m)
(and (consp (car m)) (and (consp (car m))
(P (caar m)) (P' (caar m))
(natp (cdar m)) (natp (cdar m))
(P-map-p (cdr m)))) (P'-map-p (cdr m))))

Derive P-map-to-P'-map else clause

(consp (car m)) --> (cons (cons ? 7?) ?)
(P' (caar m)) --> (cons (cons (P-to-P' (caar m)) 7?) ?)
(natp (cdar m)) --> (cons (cons ? (cdar m)) ?) identity isomorphism
(P'-map-p (cdr m))--> (cons (cons ? ?) (P-map-to-P'-map (cdr m)))
Combined: (cons (cons (P-to-P' (caar m)) (cdar m)) (P-map-to--map (cdr m)))
(defun P-map-to-P'-map (m)
(1f (atom m)
nil
(cons (cons (P-to-P' (caar m))

(cdar m))
(P-map-to-P'-map (cdr m))))



Demo: efficient value caching with invariant maintenance.

ACL2 !'>
(defiso ...)
(isodata ...)

(propagate-iso




Drone planner @

. £
Coordinator g

* Set of drones has to visit a set of sites

* Partial plan then execute cycle until all sites visited

* Each drone produces candidate plans for itself

* Coordinator filters plans to minimize redundancy

* Each drone has a state

e System state is a list of drone states plus coordinator state




