Isomorphic Data Type
Transformations

Alessandro Coglio
Stephen Westfold

’* KESTREL ACL2

iNnsTITUTE 0 YORKSHOP 2020

Isomorphic data type transformations are useful in program synthesis.

some of these may be

- So } requirements specification

isomorphic transformations i
; s1 |
Y | i
stepwise refinements -
= represent finite sets as ce ~ intermediate specifications
repetition-free ordered lists
= turn unbounded integers Y
into bounded integers g n | |
(under preconditions) code generation < v
= add redundant record (optionalin ACL2) L | p } implementation

components for caching
= change loop direction

Isomorphic data type transformations are useful in program synthesis.
They are also useful in program analysis.

some of these may be
isomorphic transformations,

which are inherently reversible | Sm
e.g. . anti-refinements, .. | higher-level representations,
N via “inverses” of which may be easier to verify
' " the transformations T
" represent repetition-free .
. . for refinements s!
ordered lists as finite sets Al _
= turn bounded integers into
unbounded integers (under = | S } code representation
preconditions) code lifting <~ 1
" remove redundant record - P } existing program

components for caching
= change loop direction

Isomorphic data type transformations are useful in program synthesis.

They are also useful in program analysis, as well as in analysis-by-synthesis.

Sn

T €

top-down)

derivation

bottom-up)
anti-derivation

equal or
- trivially

equivalent

> end-to-end proof
that p’ satisfies s,

Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.

Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.

A
o
Ty
I
Q.
<
c
[
o
c
|l

idy

Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.

X Y

A
o
Ty
I
Q.
<
c
[
o
c
|l

idy

Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.
We can mechanically construct a function /' : X" — Y’ that makes the diagram commute.

X Y
f O
S e iy T
Eof :lXm Vou :lle
X' / >©Y’

Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.
We can mechanically construct a function /' : X" — Y’ that makes the diagram commute.

X Y

:)O
/ we could just define [like this,

____ but that is not very interesting
ETL & v v g
fr=vefos
!/
. f GY,

Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.
We can mechanically construct a function /' : X" — Y’ that makes the diagram commute.

X Y
—

J
§H € v (v
O——=C0,

then b(x) recursive
else c(x, f(d(x))) definition

aSX b:X—>DY c¢c:XXY—>Y d:X—oX
F—a(x) = u(d(x)) < u(x) [terminates

keep the same structure
and add the conversions
f'(x) =ifaE*(x")
then v(b(§ ™' (x"))
else v(c(E~1(x"), v X (f (EE1(x))NN))

f(x) =if a(x) } representative

Consider two isomorphic sets (data types) X and X' with& : X — X' and &1 : X' — X.
Consider two isomorphic sets (data types) Y and Y/ withv : ¥ — Y andv™ ' : V' — Y.
Consider a function f : X — Y, a computation from inputs of type X to outputs of type Y.
We can mechanically construct a function /' : X" — Y’ that makes the diagram commute.

X Y f(x) =if a(x) representative
f then b(x) recursive
/ else c(x, f(d(x))) | definition

aSX b:X—>DY c¢c:XXY—>Y d:X—oX
F—a(x) = u(d(x)) < u(x) [terminates

keep the same structure . a
, automatic
and add the conversions o

O f'(x) =if a1 (x"))
£ then v(b(§71(x")))

X' Y else v(c(§(x), v (' E@EH =N

.6\)0‘.\00
I __ -1 . ____-- ‘o\l\(\
|—f _Uofof <

=

p=poét f' terminates because f does

f(x) =if alx)
then b(x)

X Y else c(x, f(d(x)))
: O
keep the same structure . a
/ ‘ and add the conversions } automatic o)

_1 f'x) =ifa@*(x")
then v(b(§71(x")))
else v(c(E~1(x), v Y (' CEWE TN

$
:\ expand the definitions _ - O
Q f)@ ‘ and rewrite/simplify } user-guided wa
’ Y

c
c

X !/
, :) frx) = glcelf;)’)(x’) goal: no trace of
- = Qo o & Xy -1 -1
/ / else ¢'(x', f"(d'(x"))) SO

I_fII:fI

This is a general method:

automatically create an isomorphic version
and semi-automatically rewrite/simplify it.
We can do it for f, [, />, etc.,

obtaining 1, 1", fi', i, f>', 2", etc,,

flx) = ..

keep the same structure a
and add the conversions €}

flix) = ..

expand the definitions - O
and rewrite/simplify wﬁ

f'ix") = ..

Ff=vTlef og

Consider a function g that calls f, f1, />, etc.
We can apply the same general method to g.
If g manipulates the data being transformed
only through f, 13, />, etc., we can automate
the rewriting/simplification step as well.

g(..)= ... f(...) ..
keep the same structure Q
and add the conversions ¥
g.)= v(fE1D))) ..
expand the definitions - Q
and rewrite/simplify wa

g'(..)= ..

This is a general method:

automatically create an isomorphic version
and semi-automatically rewrite/simplify it.
We can do it for f, [, />, etc.,

obtaining 1, 1", fi', i, f>', 2", etc,,

flx) = ..

keep the same structure a
and add the conversions €}

flix) = ..

expand the definitions - O
and rewrite/simplify wﬁ

f'ix") = ..

Consider a function g that calls f, f1, />, etc.
We can apply the same general method to g.
If g manipulates the data being transformed
only through f, 13, />, etc., we can automate
the rewriting/simplification step as well.

And we can do everything in one step.

g(.) = o fCL)

keep the same structure Q
and replace f with f” etc. €}

gC.)= .. f'(.) ..

We use isodata to initiate
the isomorphic transformation.

flx) = ..

‘ (isodataf ...) O’O

f'ix) = ..

‘ (simplify [’ ..) O‘O‘

f'ix") = ..

The simplify transformation
was described at ACL2-2017.

We use propagate-iso to propagate

the isomorphic transformation.

We use defiso We use isodata We use propagate-iso

to establish to initiate to propagate
the isomorphic the isomorphic the isomorphic
mappings. transformation. transformation.
X Y z flx) = .. g(.)= o F()
‘ (isodataf ...)
SIS v v YIS

f'ix) = ..

‘ (propagate-iso g ...
X ’ “ ‘ (simplify f' ...
(defiso X X' &1 ..

(defisoYY'v v ... f'ix") = .. gt.)= ...f'(.) ..
(defisoZZ'C(71..)

and for other types and for f1, f-, etc. and for g4, g», etc.

1.

3.

4.

5.

propagate-iso

Find events to propagate to

e User supplied limits

* Dependent events: function definitions and theorems

Type analysis: which arguments and results to be transformed

* Arguments: guards
e Results: typing theorems and body of definition

Dependent isomorphisms
» Subtypes, record/product types, recursive types: e.g. list, map types

Translation: substitution
* Add isomorphism theorems for newly generated functions

Hints. Hard to guarantee they will work
* Three rulesets: forward, backward, general (typing, defiso rules)
* Allow user to augment or override automatically generated hints

Dependent Isomorphism: Deriving isomorphism from predicate

Consider two isomorphic sets (data types) X and X' with& : X — X and &1 : X' — X.
Consider a predicate AlLX (1) = if atom(l) then null(l) else X (car(l)) A AllLX (cdr(l)).
Then define predicate AlIX (1) = if atom(l) then null(l) else X'(car(l)) A AlLX'(cdr(l)).
We want to find definitions for the isomorphisms All¢ : AlLX — AllX" and AlIE™Y = AlIX" — AllX.

null(l) X'(car(l)) A AlLX'(cdr(D))
AllE(D) = if atom(l) then b(1) else c(X(car(l)), AllX (cdr(l)))
null(b(l)) = b(l) = nil
if atom(l) then nil else E
E =c(X(car(l)),AllX(cdr(l)))
A consp(E) A X' (car(E)) A AlX'(cdr(E))
. E = cons(&(car(l)), AUE(cdr(D))

AllE(l) = if atom (1) then nil else cons(é(car(l)), Allé (cdr(l)))

Consider two isomorphic sets (data types) P and P'with P-to-P': P — P

(defun P-map-p (m) (defun P'-map-p (m)
(if (atom m) (1f (atom m)
(null m) (null m)
(and (consp (car m)) (and (consp (car m))
(P (caar m)) (P' (caar m))
(natp (cdar m)) (natp (cdar m))
(P-map-p (cdr m)))) (P'-map-p (cdr m))))

Derive P-map-to-P'-map else clause

(consp (car m)) --> (cons (cons ? 7?) ?)
(P' (caar m)) --> (cons (cons (P-to-P' (caar m)) 7?) ?)
(natp (cdar m)) --> (cons (cons ? (cdar m)) ?) identity isomorphism
(P'-map-p (cdr m))--> (cons (cons ? ?) (P-map-to-P'-map (cdr m)))
Combined: (cons (cons (P-to-P' (caar m)) (cdar m)) (P-map-to--map (cdr m)))
(defun P-map-to-P'-map (m)
(1f (atom m)
nil
(cons (cons (P-to-P' (caar m))

(cdar m))
(P-map-to-P'-map (cdr m))))

Demo: efficient value caching with invariant maintenance.

ACL2 !'>
(defiso ...)
(isodata ...)

(propagate-iso

Drone planner @

. £
Coordinator g

* Set of drones has to visit a set of sites

* Partial plan then execute cycle until all sites visited

* Each drone produces candidate plans for itself

* Coordinator filters plans to minimize redundancy

* Each drone has a state

e System state is a list of drone states plus coordinator state

