
New Rewriter Features in FGL

Sol Swords
Centaur Technology, Inc.

ACL2 Workshop 2020

Paper: http://acl2-2020.info/papers/new-rewriter-features.pdf

http://acl2-2020.info/papers/new-rewriter-features.pdf

What is FGL?

Bit-blasting framework, successor to GL. Core of FGL is a rewriter inspired by ACL2’s.

Compared to GL:
● Uses rewriter as its core; basic behavior is coded as rewrite/meta rules rather than built in
● Supports incremental SAT
● Improved debugging features

Compared to ACL2 rewriter:
● No linear, nonlinear, typeset reasoning
● Bit blasting emphasis: creates Boolean variables from unresolved IF tests

Verified clause processor, modulo trust tags for (e.g.) external SAT solver integrations.

Challenge

Replace hand-coded, meta-level “primitives” with rewrite rules

Make it easy to code custom behavior for new functions and types

Make it easy for rewrite rules to use syntactic and heuristic information

 → Make rewrite rules as powerful as meta rules!

The kind of rewrite rule I want

(equal (foo x y)
 (let ((sauce (bar x)))
 (if (syntactically-true-p sauce)
 (fuz y)
 (let ((crust (biz x y)))
 (prog2$
 (cw “Crust term: ~x0~%” (syntactic-term crust))
 (if (syntactically-posp (deliciosity crust))
 (buz crust y)
 (do-not-apply-this-rule-after-all)))))

Reasons we can’t do this in the ACL2 rewriter

● Can’t examine term syntax from the RHS of a rule

● Can’t abort a rule application from within its RHS

● Can’t derive semantic information from syntactic checks

○ Need (syntactically-posp x) to imply (posp x)

○ Need (syntactically-true-p x) to imply x

Outline: Two tweaks and one feature

● Tweak 1: unequiv -- “anything goes” equivalence relation

● Tweak 2: abort-rewrite -- like it says

● Feature: Binder rules

○ Short summary here, details in the paper

unequiv

(defun unequiv (x y)
 (declare (xargs :guard t))
 t)

● This is an equivalence relation!

● All objects are unequiv to each other

● You can do anything you want when rewriting under an unequiv context

Entering an unequiv context

Congruence rules can induce an unequiv context on irrelevant arguments:

(defun fgl-prog2 (x y) y)
(defcong unequiv equal (fgl-prog2 x y) 1)

Sneak peek ahead to binder rules:

 (defun bind-var (x y) x)
 (defcong unequiv equal (bind-var x y) 2)

Binds free variable x to the result of rewriting y under unequiv context.

Propagating the unequiv context

When a function or lambda call is in an unequiv context, its arguments are too.

As if we had

 (defcong unequiv unequiv (f …) n)

For all functions f, argument indices n (plus special support for lambdas).

This is the only special support needed in the rewriter. Would likely be easy to add to ACL2.

Allowed under unequiv context

● Rewrite anything to anything else.

○ Using plain rewrite or meta rules with unequiv as the equivalence relation -- trivial proof obligation

○ Application: Arbitrary, extralogical debugging/exploration routines

● Syntax-interp: access syntax of terms as in syntaxp/bind-free

○ Print/analyze/debug results from rewriting

● Fgl-interp-obj: if argument rewrites to a quoted term, then rewrite that term

● Other future special forms?

abort-rewrite

Just like the name. Logically an identity function, to make it easy to prove rules that use it. Typical usage:

(equiv lhs
 (cond (test1 rhs1)
 (test2 rhs2)
 (t (abort-rewrite lhs))))

Binder rules (sketch)

● When applying a rewrite rule, free variables may be soundly bound to anything.

○ Due to the fact that you can instantiate a theorem with any substitution.

○ (bind-var x y) returns x, binds (free variable) x to result of rewriting y under unequiv context

● Problem: when proving the theorem justifying the rule, free variables are just free variables

○ Similar to how (syntaxp (syntactically-integerp x)) doesn’t imply (integerp x)

○ (bind-var x (make-constant-integer)) is still logically just x, about which we know nothing

Solution

E.g.: Instead of bind-var, use (bind-positive-int x y)

● Logically: x is a free variable, (bind-positive-int x y) defined to be (pos-fix x)
● Binder rule determines how x will be bound when rewriting

● Rule shows that we can select an x that bind-positive-int will return unchanged:

(implies (equal x (choose-positive-int y))
 (equal (bind-positive-int x y)
 x)
Effectively: If we choose x to be the result of rewriting (choose-positive-int y), then
bind-positive-int will return x unchanged.

Original example, in FGL

(equal (foo x y)
 (let ((sauce (bar x)))
 (if (bind-syntac-true-p sauce-provable sauce)
 (fuz y)
 (let ((crust (biz x y)))
 (fgl-prog2
 (syntax-interp (cw “Crust term: ~x0~%” crust))
 (if (bind-syntac-posp crust-delishp (deliciosity crust))
 (buz crust y)
 (abort-rewrite (foo x y))))))

(def-fgl-rewrite fgl-equal
 (equal (equal x y)
 (cond ((check-integerp x-intp x)
 (cond ((check-integerp y-intp y)
 (and (iff (intcar x) (intcar y))
 (or (and (check-int-endp x-endp x)
 (check-int-endp y-endp y))
 (equal (intcdr x) (intcdr y)))))
 ((check-non-integerp y-non-intp y) nil)
 (t (abort-rewrite (equal x y)))))
 ((check-booleanp x-boolp x)
 (cond ((check-booleanp y-boolp y)
 (iff x y))
 ((check-non-booleanp y-non-boolp y) nil)
 (t (abort-rewrite (equal x y)))))
 ((check-consp x-consp x)
 (cond ((check-consp y-consp y)
 (and (equal (car x) (car y))
 (equal (cdr x) (cdr y))))
 ((check-non-consp y-non-consp y) nil)
 (t (abort-rewrite (equal x y)))))
 ((and (check-integerp y-intp y)
 (check-non-integerp x-non-intp x)) nil)
 ((and (check-booleanp y-boolp y)
 (check-non-booleanp x-non-boolp x)) nil)
 ((and (check-consp y-consp y)
 (check-non-consp x-non-consp x)) nil)
 (t (abort-rewrite (equal x y))))))

In the paper

● More explanation of binder rules

● Implementation problems and solutions

● What would it take to port these features to the ACL2 rewriter?

